机器学习
Java做些事
关注公众号“Java做些事”系统学习Java知识
展开
-
根据姓名猜性别
根据中文姓名猜测其性别1.安装方法pip install ngender2.使用方法1.在命令行使用$ ng 赵本山 宋丹丹name: 赵本山 => gender: male, probability: 0.9836229687547046name: 宋丹丹 => gender: female, probability: 0.97594861289499072.在Python程序种使用>>> import ngender>>>原创 2020-11-03 20:52:35 · 828 阅读 · 0 评论 -
浅谈深度学习过拟合和解决办法
什么是过拟合所谓过拟合(over-fitting)其实就是所建的机器学习模型或者是深度学习模型在训练样本中表现得过于优越,导致在验证数据集以及测试数据集中表现不佳。举个例子:现在我训练一个模型来识别狗狗,训练的数据恰好全是二哈的图片,结果多次迭代后把二哈的全部特点都识别成狗狗特有的了(比如二哈的颜色、和爱拆家的特点等)。这样如果我去识别一只金毛的时候则无法识别。这就是过拟合。 简单的一句话就是机器模型学到了太多不该学到的特点。过拟合的原因使用的模型比较复杂有噪声存在数据量有限过拟合原创 2020-06-17 22:31:04 · 1752 阅读 · 0 评论 -
小样本处理思路
需要解决的问题现在有24类数据,对24类问题进行分类,每类的数据量只有10条数据。根据这些数据进行构建模型。解决思路1.直接构建分类器进行文本分类结果:可想而知,由于数据量巨少,所以准确率只有1%2.分类加实体提取相结合主要思路:首先对24类数据进行二分类,因为我处理的问题可以归为两个大类,首先对两个大类的数据进行标签备注,然后去除相关实体之后可以保证二分类效果更好。在没有对实体进行去除的情况下,二分类的**准确率为50%**左右实体提取方面,由于我的数据不是量比较少和实体不是通原创 2020-06-16 10:08:48 · 1396 阅读 · 0 评论 -
终于有人讲清楚准确率(accuracy)、召唤率(recall)和精确率(precision)的关系了
一、概述召回率、准确率、精确率、F值的作用在机器学习、数据挖掘、推荐系统完成建模之后,需要对模型的效果做评价。二、定义首先给出一个大家经常见到的图:详细定义准确率(accuracy)=(TP+TN)/(TP+FN+FP+TN)通俗解释: 在所有样本中,预测正确的概率精确率(precision)=TP/(TP+FP)通俗解释:你认为的正样本中,有多少是真的正确的概率召回率(recall)=TP/(TP+FN)通俗解释:正样本中有多少是被找了出来P和R指标有时候会出现原创 2020-06-08 16:59:05 · 2518 阅读 · 0 评论 -
白话马尔可夫链
1. 古板的定义 马尔可夫链因俄国数学家Andrey Andreyevich Markov得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马尔可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。看完这个定义我的表情是下面这样的看过大佬的一些通俗解释的例子: 假如每天的天气是一个状态: 比如昨天是阴天, 今天是晴天,则明天...原创 2020-05-12 13:47:52 · 375 阅读 · 0 评论