【 解决单个样本输入长度过长超过 预训练模型能接受的输入长度 的问题】

文章介绍了如何处理单个样本输入长度超过预训练模型如BERT所能接受的限制。通过使用BertTokenizer或AutoTokenizer的truncation、padding、max_length等参数,可以截断、填充文本以适应模型要求,并利用stride和return_overflowing_tokens来处理超出部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

样本token过长,怎么保留

解决单个样本输入长度过长超过 预训练模型能接受的输入长度 的问题

// An highlighted block
# 解决单个样本输入长度过长超过 预训练模型能接受的输入长度 的问题
import logging
logging.info('================')
f = open('test.txt')
text = f.readlines()
print(text[1])
# tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")#bert-base-uncased
C_tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
token = C_tokenizer(text[1], truncation=True, max_length=40, padding=True, return_overflowing_tokens=True,stride=20,return_tensors="pt")#max_length=10 , 
for i, ipt in enumerate(token["input_ids"]):
    print(C_tokenizer.decode(ipt))      

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值