- 博客(3)
- 收藏
- 关注
原创 Mindspore体验GAN图像生成
本案例实现中所搭建的 GAN 模型结构与原论文中提出的 GAN 结构大致相同,但由于所用数据集 MNIST 为单通道小尺寸图片,可识别参数少,便于训练,我们在判别器和生成器中采用全连接网络架构和。在上图中,蓝色虚线表示判别器,黑色虚线表示真实数据分布,绿色实线表示生成器生成的虚假数据分布, 表示隐码, 表示生成的虚假图像。判别器通过求取梯度和损失函数对网络进行优化,将靠近真实数据分布的数据判定为1,将靠近生成器生成出来数据分布的数据判定为0。如论文所述,最小化 来训练生成器,以产生更好的虚假图像。
2025-12-14 23:55:44
465
原创 MindSpore社区活动:UNet-2D的图像分割
Unet提出的初衷是为了解决医学图像分割的问题。Unet网络非常的简单前半部分就是特征提取后半部分是上采样。在一些文献中把这种结构叫做。
2023-08-20 11:52:54
491
原创 MindSpore社区活动:Transformer也能图像分类
近些年,随着基于自注意(Self-Attention)结构的模型的发展,特别是Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于Transformers的计算效率和可扩展性,它已经能够训练具有超过100B参数的空前规模的模型。ViT则是自然语言处理和计算机视觉两个领域的融合结晶。在不依赖卷积操作的情况下,依然可以在图像分类任务上达到很好的效果。
2023-07-27 22:07:39
266
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅