在一个班级里有四个同学,女生是小红,还有三个男生小A、小B和小C。
这三个男生都认为小红喜欢自己,且他们仨都想谈恋爱,所以都希望在不暴露自己的情况下了解小红的心意。
小A想了个办法,他首先假设小红不喜欢自己,然后只需要尝试女生在不喜欢自己的情况下做了哪些不平常的事情,比如同意看电影之类的举动。就能反向证明小红对自己的喜欢,就算最后的结果是没同意,那两人也没撕破脸,还能做朋友。
小B也想了个办法,他只需要找到全国所有女生的信息,比如星座、身高、体重和喜欢的男生类型,只要找到女生的特征和喜欢男生的类型之间的关系,也能在一定程度上推测出小红是否喜欢自己。但这只是推测,数据规律只能给你启示,不能代表小红的真实想法。
小C是一个正常人,由于他喜欢小红,所以他会不断寻找小红也喜欢自己的理由(确认偏差),尽管小红的很多举动都在预示着自己讨厌小C,他依然会用自己独特的角度解释小红就是喜欢他(归因偏差)。
这个故事讲完了,其实无所谓故事的结局是怎么样的,反正我肯定不希望自己是小C那样的人。但可惜的是,这里面只有小C是一个正常人,他的行为是人类都会出现的认知偏差。而小A和小B是从不同的角度来解决认认知偏差带来的影响,也是量化策略的两种生成方式。
假设是对现象的初步解释,有了假设就需要验证这个假设是否经得住推敲,但是假设一定要建立在理论或经验的基础之上。比如我觉得小红喜欢我的原因可能是因为我的成绩总在前10,老师对我的评价很好,这是招女生喜欢的原因。但是你不能说小红今天穿了和我一样颜色的衣服,所以她喜欢我,因为喜欢我所以选择和我穿一样颜色的衣服。这个结论的问题不是在于它有多扯,而是他根据观察到的结果反过来推测原因,那不管她做出什么行为,你总能找到一个理由支持你的观点。
小B代表的是数据驱动的投资方法,他不在乎小红喜欢自己的原因,她只想知道小红喜欢的男生和自己是不是匹配。但这里的问题是,尽管历史数据的规律上可能支持小红喜欢小B这个类型的,但这不代表小红的真实想法,随着时间的推移,小红的喜好可能发生变化。
最后,量化追求的是找到很多很多的小红,我们只需要保证100个小红里面有51个喜欢自己,就算剩下的对自己是负面情绪,那也是收获了更多的喜欢,就是赚。另外我们在找小红的时候会尽可能的用比较的思想,因为女孩的心思很难猜,但是我可以比较两个女孩,这样我更容易得到哪个女孩子更喜欢我的结论。最后就是找那些专一的小红,因为就算你找到了爱你的小红,但是隔天就变心了也没用。