论文阅读:BIGMOMAL — Big Data Analytics for Mobile Malware Detection

本文探讨了移动恶意软件的威胁,并基于监督机器学习和大数据分析研究了Android设备上的恶意软件检测。使用SherLock数据集,通过决策树进行特征工程,分析CPU、线程等指标区分正常和恶意应用。尽管单用户模型识别存在挑战,但提出了多用户建模的创新思路。
摘要由CSDN通过智能技术生成

研究背景

移动恶意软件崛起,移动端存有个人大量隐私内容,安全局势十分严峻。依靠监督机器学习模型研究Android智能手机中的恶意软件和运行应用程序检测问题。

传统方式
识别安卓系统恶意软件:

  • 静态技术:主要基于源代码分析
  • 动态方法在执行期间分析应用程序

论文内容

依赖于监督机器学习模型和大数据分析框架研究了智能手机中的恶意软件检测问题;

评估准则:
i)整体模型性能,(ii)不同用户的学习模型的概括,(iii)检测精度随时间的漂移。

数据集

SherLock数据集,这是一个包含6000多亿个样本的大规模时间序列数据集
2015.2 - 2017.12

实验内容

基于SherLock datase数据集实现对安卓上不同应用程序 & 正常、恶意软件区分

区分不同的运行应用程序

决策树;
**特征工程:**CPU、线程、存储、服务运行,在后台运行还是在前台运行?

时序识别能力:随时间下降

识别恶意软件

特征工程:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值