主题模型

1.主题模型的引入

    上次介绍完朴素贝叶斯后,我们发现它可以胜任许多文本分类问题,但是也存在一个缺陷:无法解决预料中一词多义和多词一义的问题;如果使用词向量作为文档的特征,一词多义和多词一义会造成计算文档间相似度的不确定性。为此,可以通过增加主题的方式,在一定程度上解决上述问题:即一词可能被映射到多个主题中,多词也可能被映射到某个主题。

    怎样才能生成主题?对文章的主题应该怎么分析?这是主题模型要解决的问题。

    首先,可以用生成模型来看文档和主题这两件事。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到的。那么,如果我们要生成一篇文档,它里面的每个词语出现的概率为:

     

2.LDA

在说这部分之前,默认把Beta分布和Dirichlet分布已经了解。

2.1LDA 的解释

假设共有m篇文章,一共涉及了K个主题;每篇文章都有各自的主题分布,主题分布是多项分布,该多项分布的参数服从Dirichlet分布,该Dirichlet分布的参数为a;每个主题都有各自的词分布,词分布为多项分布,该多项分布的参数服从Dirichlet分布,该Dirichlet分布的参数为beta;对于某篇文章中的第n个词,首先从该文章的主题分布中采样一个主题,然后在这个主题对应的词分布中采样一个词。不断的重复这个随机生成过程,直到m篇文章全部完成上述过程。其中w是可以观察到的已知变量,a和beta是根据经验给定的先验参数,其他的变量z,theta都是未知的隐含变量,需要根据观察到的变量来学习估计的。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值