题目描述
尼克每天上班之前都连接上英特网,接收他的上司发来的邮件,这些邮件包含了尼克主管的部门当天要完成的全部任务,每个任务由一个开始时刻与一个持续时间构成。
尼克的一个工作日为N分钟,从第一分钟开始到第N分钟结束。当尼克到达单位后他就开始干活。如果在同一时刻有多个任务需要完成,尼克可以任选其中的一个来做,而其余的则由他的同事完成,反之如果只有一个任务,则该任务必需由尼克去完成,假如某些任务开始时刻尼克正在工作,则这些任务也由尼克的同事完成。如果某任务于第P分钟开始,持续时间为T分钟,则该任务将在第P+T-1分钟结束。
写一个程序计算尼克应该如何选取任务,才能获得最大的空暇时间。
输入输出格式
输入格式:
输入数据第一行含两个用空格隔开的整数N和K(1≤N≤10000,1≤K≤10000),N表示尼克的工作时间,单位为分钟,K表示任务总数。
接下来共有K行,每一行有两个用空格隔开的整数P和T,表示该任务从第P分钟开始,持续时间为T分钟,其中1≤P≤N,1≤P+T-1≤N。
输出格式:
输出文件仅一行,包含一个整数,表示尼克可能获得的最大空暇时间。
输入输出样例
输入样例#1: 复制
15 6 1 2 1 6 4 11 8 5 8 1 11 5
输出样例#1:
4
首先,这明显是一道线性动态规划的题,
那么不难想到用f[i]表示时间轴上1~i时间内可获得的最大空闲时间。
但问题是如果正着推i的时候 显然还没转移 i+t,那么就会出现i时刻的最大空余时间与之后选择的任务有关(你显然不知道当前选那个任务是最优的)
所以需要逆推,而此时的状态转移方程就可以分两种情况写出
-
若当前时刻有任务,设任务数量为tn[i],那么f[i] = max(f[i], f[i+a[tn[i]]]);(a存储着持续时间t)
-
若当前时间无任务,那么就可以休息,所以f[i] = f[i+1] + 1;(注意是逆推,是i+1)
那么就可以写出AC代码了
PS:输入的任务是无序的,需要对结构体进行排序
#include <bits/stdc++.h>
using namespace std;
struct task{
int p,t;
};
bool cmp(task t1, task t2){
return t1.p > t2.p;
}
int main()
{
int n,k;
int num = 1;
cin >> n >> k;
task a[10005];
int tn[10005] = {0}; //task_num记录每一个时间点的任务数量
for (int i = 1; i <= k; ++i) {
scanf("%d %d",&a[i].p, &a[i].t);
tn[a[i].p] ++;
}
int f[10005] = {0};
sort(a+1,a+1+k,cmp);
for (int i = n; i >= 1; --i) {
if(tn[i] == 0){
f[i] = f[i+1] + 1;
}
else{
for (int j = 1; j <= tn[i]; ++j) {
f[i] = max(f[i], f[i+a[num].t]);
num ++;
}
}
}
cout << f[1] << endl;
return 0;
}
發佈