概率与数理统计学习总结四---连续型随机变量及其概率密度

本文总结了连续型随机变量的概率密度函数,包括均匀分布、指数分布和正态分布,并探讨了期望、方差、切比雪夫不等式、协方差及相关系数等关键概念。此外,还介绍了矩、协方差矩阵在理解随机变量特性中的作用。
摘要由CSDN通过智能技术生成

老师课堂总结,请勿转载

连续型随机变量及其概率密度

对于随机变量X的分布函数F(x)存在非负可积函数f(x),使得对于任意x有
     
则称X为连续型随机变量, f(x)称为X的概率密度函数,简称概率密度  
     概率密度f(x)满足的四条性质


均匀分布

若连续随机变量X具有概率密度

则称X在区间(a,b)上服从均匀分布记为X~U(a, b)



指数分布

若连续随机变量X的概率密度为


其中θ>0为常数,则称X服从参数为θ的指数分布
求指数分布的分布函数F(x)

正态分布

若连续型随机变量X的概率密度为


其中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值