pat 甲级 1007. Maximum Subsequence Sum
题意概述
给定一个由 K 个整数组成的序列,求最大连续子序列和。
输入输出格式
输入第一行包含一个正整数 K。第二行包含 K 个数字,以空格分隔。
在一行中输出最大和,以及最大子序列的第一个和最后一个数字。数字必须用一个空格分隔,但行尾不能有多余的空格。如果最大子序列不是唯一的,则输出索引 i 和 j 最小的子序列。如果所有 K 个数字均为负,则其最大和定义为 0,并输出整个序列的第一个和最后一个数字。
数据规模
K < = 1 0 4 K<=10^4 K<=104
前置知识
本题是经典的线性动态规划问题,建议系统学习过动态规划之后再尝试解决本题。
C++代码
#include <bits/stdc++.h>
using namespace std;
using gg = long long;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
gg ni;
cin >> ni;
vector<gg> v(ni);
for (gg& i : v) {
cin >> i;
}
vector<gg> start(ni), dp(v.begin(), v.end());
iota(start.begin(), start.end(), 0);
for (gg i = 1; i < ni; ++i) {
if (dp[i] <= dp[i - 1] + v[i]) {
dp[i] = dp[i - 1] + v[i];
start[i] = start[i - 1];
}
}
gg ans = max_element(dp.begin(), dp.end()) - dp.begin();
if (dp[ans] < 0) {
cout << "0 " << v[0] << " " << v.back();
} else {
cout << dp[ans] << " " << v[start[ans]] << " " << v[ans];
}
return 0;
}