Rethinking the Route Towards Weakly Supervised Object Localization 论文笔记
前言通常来说,深度学习在一些计算机视觉任务上的应用,比如分类、定位和检测,需要大量精确标注的数据,而模型在这些数据集上进行预训练之后,并不能直接应用到其它的任务中。为了减少这种限制,人们开始利用弱监督方法来进行学习,弱监督的训练数据一般只有image-level标签,没有大型数据集中的location-level(bbox和关键点)和pixel-level(每个像素都有一个类标签,用于语义分割)...
原创
2020-04-04 11:40:23 ·
1548 阅读 ·
0 评论