【李沐深度学习笔记】线性代数实现

本文介绍了使用PyTorch进行线性代数基础操作,包括张量的加减乘除、标量和向量处理、矩阵运算(转置、哈达玛积)、求和与平均值计算、累积总和以及点积和矩阵向量积的概念。同时提及了L2范数和矩阵的弗罗贝尼乌斯范数在深度学习中的应用。

课程地址和说明

线性代数实现p2
本系列文章是我学习李沐老师深度学习系列课程的学习笔记,可能会对李沐老师上课没讲到的进行补充。
这节就算之前内容的复习,后面以截图形式呈现

标量由只有一个元素的张量表示

import torch
x = torch.tensor([3.0])
y = torch.tensor([2.0])
# 加减法
print(x+y)
# 乘法
print(x * y)
# 除法
print(x / y)
# 幂运算
print(x**y)

运行结果:
tensor([5.])
tensor([6.])
tensor([1.5000])
tensor([9.])

你可以将向量视为标量值组成的列表

# 生成0-3的顺序列表,(函数是左闭右开)
x = torch.arange(4)
print(x)

运行结果:
tensor([0, 1, 2, 3])

通过张量的索引来访问任一元素

访问张量的长度

只有一个轴的张量,形状只有一个元素。

通过指定两个分量m和n来创建一个形状为m × n的矩阵

矩阵的转置

对称矩阵的转置

构造多轴的数据结构


【注】就是构建多维数组

给定具有相同形状的任何两个张量,任何按元素二元运算的结果都将是相同形状的张量

矩阵的哈达玛积

其实就是不按矩阵乘法来,按两个矩阵对应元素相乘得到个新矩阵(前提是矩阵是同形的,即两个相乘的矩阵行列数需要一致)

标量和矩阵相加是所有元素都与标量相加得到新矩阵

计算矩阵所有元素的和

表示任意形状张量的元素和

不论张量形状如何,其求所有元素和的结果永远是标量

指定求和汇总张量的轴(按不同维度求和)


【注】axis是按不同维度求和,从0开始是第1个维度。这里理解上稍微有点难度,我写了代码:

# 按维度求和
C 
### 李沐深度学习笔记资源汇总 对于希望获取李沐《动手学深度学习》相关笔记的读者来说,存在多种途径可以访问这些资料。笔记不仅覆盖了理论讲解还包含了实践操作指南[^3]。 #### PDF 版本笔记 目前官方并没有提供统一整理成PDF版本的笔记文件。不过社区成员基于个人学习过程中制作了一些总结文档,但需要注意的是这类非官方发布的材料版权归属可能存在争议,建议优先考虑通过合法渠道获取学习素材。 #### GitHub 仓库 GitHub上有一个由exacity维护的项目专门用于存放《Deep Learning Book》中文翻译版的内容,虽然这不是直接针对李沐老师的教材,但对于理解深度学习原理同样具有很高的参考价值[^2]: - **链接**: [Deeplearningbook Chinese](https://github.com/exacity/deeplearningbook-chinese) 另外,在[动手学深度学习v2 PyTorch版](https://zh.d2l.ai/)官方网站提供了每章对应的Jupyter Notebook形式的学习资料下载选项,这对于想要跟随教程亲手实验的同学非常有帮助[^4]。 #### 数据处理相关内容 如果特别关注于数据获取方面的话题,则可以从实用机器学习的角度出发了解如何收集、清洗并利用不同类型的机器学习数据集,这部分内容涉及到了诸如公开可用的数据源介绍以及自动化抓取技术等知识点[^5]。 ```python import requests from bs4 import BeautifulSoup def fetch_data(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') return soup.prettify() ``` 此段Python代码展示了简单的网页爬虫实现方式之一,可用于从互联网上提取所需的信息作为后续分析的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔理沙偷走了BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值