- 博客(4)
- 收藏
- 关注
原创 李沐—动手学深度学习笔记
将模型的输入和参数同模型的输出关联起来。回想一下,要计算线性模型的输出, 我们只需计算输入特征X和模型权重w的矩阵-向量乘法后加上偏置b。广播机制: 当我们用一个向量加一个标量时,标量会被加到向量的每个分量上。对于每一个小批量,我们会进行以下步骤:通过调用net(X)生成预测并计算损失l(前向传播)。通过进行反向传播来计算梯度。通过调用优化器来更新模型参数。4.多层感知机。
2023-09-15 16:21:03 1362
原创 王树森强化学习-笔记
把控制问题的自由度记为d,在机械手臂的例子中,有两个关节可以转动,所以自由度d=2,那么动作空间就是二维空间的一个子集,做离散化时,空间的纬度越高,网格上的点越多,网格点的数量随d指数增长,这会造成维度灾难。对于确定的状态s,策略网络会输出确定的动作a,如果输入的状态是固定的,而且价值网络也是固定的,那么唯一会影响价值网络的因素就是参数。,前后transition有很强的关联,实验证明这样的相关性是有害的,如果把序列打散,消除相关性,则有利于把DQN训练的更好。a的维数就是动作空间的维度。
2023-09-08 16:13:40 555 1
原创 open-cv学习笔记
cv2.BORDER_REFLECT_101 or cv2.BORDER_DEFAULT:反射法,和上面类似,但是有一些细微的不同,类似于gfedcb|abcdefgh|gfedcba。cv2.CV_IMWRITE_JPEG_QUALITY:设置 .jpeg/.jpg 格式的图片质量,取值为 0-100(默认值 95),数值越大则图片质量越高;cv2.CV_IMWRITE_PNG_COMPRESSION:设置 .png 格式图片的压缩比,取值为 0-9(默认值 3),数值越大则压缩比越大。
2023-08-04 12:41:10 761 1
原创 pytorch-动手学深度学习
fillna() 是 DataFrame 中的一个方法,用于将数据中缺失的值填充为指定的值或方法所返回的值。也就是说,如果我们的目标形状是(高度,宽度), 那么在知道宽度后,高度会被自动计算得出,不必我们自己做除法。幸运的是,我们可以通过。例如,如果我们用Y = X + Y,我们将取消引用Y指向的张量,而是指向新分配的内存处的张量。沿行(轴-0,形状的第一个元素) 和按列(轴-1,形状的第二个元素)连结两个矩阵时,dim=0,增加行数;可以创建一个形状为(2,3,4)的张量,其中所有元素都设置为0/1。
2023-07-17 15:21:57 2315 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人