1. 集合与映射
1.15.4 函数的参数表示
自变量
x
x
x和因变量
y
y
y不好直接表示,可以引入参数
t
t
t,则
{
x
=
x
(
t
)
y
=
y
(
t
)
,
t
∈
[
a
,
b
]
\left\{\begin{array}{ll} x=x(t) \\ y=y(t) \end{array}\right.,t\in[a,b]
{x=x(t)y=y(t),t∈[a,b],这样一个表示间接地反映了变量
x
x
x和变量
y
y
y之间的函数关系:
X
=
{
x
∣
x
=
x
(
t
)
,
t
∈
[
a
,
b
]
}
,
Y
=
{
y
∣
y
=
y
(
t
)
,
t
∈
[
a
,
b
]
}
\textbf{X}=\{x|x=x(t),t\in[a,b]\},\textbf{Y}=\{y|y=y(t),t\in[a,b]\}
X={x∣x=x(t),t∈[a,b]},Y={y∣y=y(t),t∈[a,b]}
f
:
X
⟶
Y
f:\textbf{X}\longrightarrow \textbf{Y}
f:X⟶Y
x
=
x
(
t
)
⟼
y
(
t
)
x=x(t)\longmapsto y(t)
x=x(t)⟼y(t)
【例】
x
2
+
y
2
=
R
2
x^{2}+y^{2}=R^{2}
x2+y2=R2
{
x
=
R
cos
t
y
=
R
sin
t
,
t
∈
[
0
,
π
]
\left\{\begin{array}{ll} x=R\text{cos}t \\ y=R\text{sin}t \end{array}\right.,t\in[0,\pi]
{x=Rcosty=Rsint,t∈[0,π](恰好是上半个圆周)
{
x
=
R
cos
t
y
=
R
sin
t
,
t
∈
[
π
,
2
π
]
\left\{\begin{array}{ll} x=R\text{cos}t \\ y=R\text{sin}t \end{array}\right.,t\in[\pi,2\pi]
{x=Rcosty=Rsint,t∈[π,2π](表示下半个圆周)
【例1.2.15】【旋转线】地面上有一个轮子,车轮在地面上滚动,轮子上有一点A,随着轮子在地面上滚动,这点A在空间描出了一条曲线,求曲线的函数关系。
{
x
=
t
−
sin
t
y
=
1
−
cos
t
,
t
∈
[
0
,
+
∞
)
\left\{\begin{array}{ll} x=t-\text{sin}t \\ y=1-\text{cos}t \end{array}\right.,t\in[0,+\infty)
{x=t−sinty=1−cost,t∈[0,+∞)
(转动角度可以无限大,因为可以一直转,转一圈是
2
π
2\pi
2π,转两圈就是
4
π
4\pi
4π,以此类推)
1.16 函数的简单特性
1.16.1 有界性
y
=
f
(
x
)
,
x
∈
D
y=f(x),x\in\textbf{D}
y=f(x),x∈D,若存在
m
m
m和
M
M
M使得
m
≤
f
(
x
)
≤
M
,
x
∈
D
m\le f(x)\le M,x\in\textbf{D}
m≤f(x)≤M,x∈D,则称
f
(
x
)
f(x)
f(x)有界,
m
m
m为一个下界,
M
M
M为一个上界,上下界不唯一。
【注】
D
\textbf{D}
D为定义域。
等价定义:存在一个
X
>
0
X>0
X>0,使得
∣
f
(
x
)
∣
≤
X
,
x
∈
D
|f(x)|\le X,x\in\textbf{D}
∣f(x)∣≤X,x∈D.
1.16.2 单调性
- y = f ( x ) , x ∈ D y=f(x),x\in\textbf{D} y=f(x),x∈D,若对任意 x 1 , x 2 ∈ D x_{1},x_{2}\in\textbf{D} x1,x2∈D,如果 x 1 < x 2 ⇒ f ( x 1 ) ≤ f ( x 2 ) x_{1}<x_{2}\Rightarrow f(x_{1})\le f(x_{2}) x1<x2⇒f(x1)≤f(x2),则称函数 f f f在 D \textbf{D} D上单调增加,记为 f ↑ f\uparrow f↑。
- y = f ( x ) , x ∈ D y=f(x),x\in\textbf{D} y=f(x),x∈D,若对任意 x 1 , x 2 ∈ D x_{1},x_{2}\in\textbf{D} x1,x2∈D,如果 x 1 < x 2 ⇒ f ( x 1 ) < f ( x 2 ) x_{1}<x_{2}\Rightarrow f(x_{1})< f(x_{2}) x1<x2⇒f(x1)<f(x2),则称函数 f f f在 D \textbf{D} D上严格单调增加,记为 f f f严格 ↑ \uparrow ↑。
- y = f ( x ) , x ∈ D y=f(x),x\in\textbf{D} y=f(x),x∈D,若对任意 x 1 , x 2 ∈ D x_{1},x_{2}\in\textbf{D} x1,x2∈D,如果 x 1 < x 2 ⇒ f ( x 1 ) ≥ f ( x 2 ) x_{1}<x_{2}\Rightarrow f(x_{1})\ge f(x_{2}) x1<x2⇒f(x1)≥f(x2),则称函数 f f f在 D \textbf{D} D上单调减少,记为 f ↓ f\downarrow f↓。
- y = f ( x ) , x ∈ D y=f(x),x\in\textbf{D} y=f(x),x∈D,若对任意 x 1 , x 2 ∈ D x_{1},x_{2}\in\textbf{D} x1,x2∈D,如果 x 1 < x 2 ⇒ f ( x 1 ) > f ( x 2 ) x_{1}<x_{2}\Rightarrow f(x_{1})> f(x_{2}) x1<x2⇒f(x1)>f(x2),则称函数 f f f在 D \textbf{D} D上严格单调减少,记为 f f f严格 ↓ \downarrow ↓。
【例】
y
=
x
3
,
a
x
(
a
>
1
)
,
arctan
x
y=x^{3},a^{x}(a>1),\text{arctan}x
y=x3,ax(a>1),arctanx都是单调增加函数,而且还都是严格单调增加函数。
【例】
y
=
a
x
(
0
<
a
<
1
)
,
arccot
x
y=a^{x}(0<a<1),\text{arccot}x
y=ax(0<a<1),arccotx都是单调减少函数,而且还都是严格单调减少函数。
【例】
y
=
x
2
,
{
在
[
0
,
+
∞
)
上单调增加
在
(
−
∞
,
0
]
上单调减少
y=x^{2},\left\{\begin{array}{ll} 在[0,+\infty)上单调增加 \\ 在(-\infty,0]上单调减少 \end{array}\right.
y=x2,{在[0,+∞)上单调增加在(−∞,0]上单调减少
【例】
y
=
sin
x
{
在
[
2
n
π
,
2
n
π
+
π
2
]
上单调增加
在
[
2
n
π
+
π
2
,
2
n
π
+
3
π
2
上单调减少
y=\text{sin}x\left\{\begin{array}{ll} 在[2n\pi,2n\pi+\frac{\pi}{2}]上单调增加 \\ 在[2n\pi+\frac{\pi}{2},2n\pi+\frac{3\pi}{2}上单调减少 \end{array}\right.
y=sinx{在[2nπ,2nπ+2π]上单调增加在[2nπ+2π,2nπ+23π上单调减少
1.16.3 奇偶性
设函数定义域 D \textbf{D} D关于原点对称,即 x ∈ D ⇔ − x ∈ D x\in\textbf{D}\Leftrightarrow -x\in\textbf{D} x∈D⇔−x∈D,若在 D \textbf{D} D上, f ( x ) = f ( − x ) f(x)=f(-x) f(x)=f(−x),则称 f f f是偶函数;若在 D \textbf{D} D上, f ( x ) = − f ( x ) f(x)=-f(x) f(x)=−f(x),则称 f f f是奇函数。
【例】 y = sin x y=\text{sin}x y=sinx是奇函数, y = cos x y=\text{cos}x y=cosx是偶函数, y = x 3 y=x^{3} y=x3是奇函数。
【例1.2.16】判断
f
(
x
)
=
1
1
+
a
x
−
1
2
f(x)=\frac{1}{1+a^{x}}-\frac{1}{2}
f(x)=1+ax1−21的奇偶性。
【解】
f
(
−
x
)
=
1
1
+
a
−
x
−
1
2
f(-x)=\frac{1}{1+a^{-x}}-\frac{1}{2}
f(−x)=1+a−x1−21
对
1
1
+
a
−
x
\frac{1}{1+a^{-x}}
1+a−x1分子分母都乘
a
x
a^{x}
ax则
f
(
−
x
)
=
a
x
1
+
a
x
−
1
2
=
(
a
x
1
+
a
x
−
1
)
+
1
2
=
−
1
1
+
a
x
+
1
2
=
−
f
(
x
)
f(-x)=\frac{a^{x}}{1+a^{x}}-\frac{1}{2}=(\frac{a^{x}}{1+a^{x}}-1)+\frac{1}{2}=\frac{-1}{1+a^{x}}+\frac{1}{2}=-f(x)
f(−x)=1+axax−21=(1+axax−1)+21=1+ax−1+21=−f(x)
所以
f
(
x
)
f(x)
f(x)为奇函数。
1.16.4 周期性
设
D
\textbf{D}
D是函数的定义域,要求
x
∈
D
⇒
x
±
T
∈
D
x\in\textbf{D}\Rightarrow x\pm T\in\textbf{D}
x∈D⇒x±T∈D,且满足
f
(
x
)
=
f
(
x
±
T
)
f(x)=f(x\pm T)
f(x)=f(x±T),则称
T
(
T
>
0
)
T(T>0)
T(T>0)为
f
f
f的一个周期。
如果在所有的周期中有最小的
T
T
T,则称它为最小周期。
【问题】是否周期函数都有最小周期?
【例1.2.17】【狄利克雷(Dirichlet)函数】
D
(
x
)
=
{
0
,
x
为无理数
1
,
x
为有理数
D(x)=\left\{\begin{array}{ll} 0,& x为无理数 \\ 1,& x为有理数 \end{array}\right.
D(x)={0,1,x为无理数x为有理数
有理数
r
>
0
r>0
r>0都是狄利克雷函数的周期,
D
(
x
)
=
D
(
x
±
r
)
D(x)=D(x\pm r)
D(x)=D(x±r)(无理数+
r
r
r=无理数,有理数+
r
r
r=有理数)
则任何大于0的有理数都是它的周期,故狄利克雷函数没有最小周期。
1.17 两个重要的不等式
- 【定理1.2.1】【三角不等式】对任意实数
a
,
b
a,b
a,b,则有
∣
∣
a
∣
−
∣
b
∣
∣
≤
∣
a
+
b
∣
≤
∣
a
∣
+
∣
b
∣
||a|-|b||\le |a+b| \le |a|+|b|
∣∣a∣−∣b∣∣≤∣a+b∣≤∣a∣+∣b∣
【证】 − ∣ a ∣ ∣ b ∣ ≤ a b ≤ ∣ a ∣ ∣ b ∣ -|a||b|\le ab\le |a||b| −∣a∣∣b∣≤ab≤∣a∣∣b∣
则 − ∣ a ∣ ∣ b ∣ + a 2 + b 2 ≤ a b + a 2 + b 2 ≤ ∣ a ∣ ∣ b ∣ + a 2 + b 2 -|a||b|+a^{2}+b^{2}\le ab+a^{2}+b^{2}\le |a||b|+a^{2}+b^{2} −∣a∣∣b∣+a2+b2≤ab+a2+b2≤∣a∣∣b∣+a2+b2
即 ( ∣ a ∣ − ∣ b ∣ ) 2 ≤ ( a + b ) 2 ≤ ( ∣ a ∣ + ∣ b ∣ ) 2 (|a|-|b|)^{2}\le (a+b)^{2}\le (|a|+|b|)^{2} (∣a∣−∣b∣)2≤(a+b)2≤(∣a∣+∣b∣)2
亦即(开根号) ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ ||a|-|b||\le |a+b| \le |a|+|b| ∣∣a∣−∣b∣∣≤∣a+b∣≤∣a∣+∣b∣
【注】上式称为三角不等式的原因:考虑将 a , b a,b a,b看作向量,
则 ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ |a+b| \le |a|+|b| ∣a+b∣≤∣a∣+∣b∣表示三角形的两边之和大于第三边, ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a + b ∣ ||a|-|b||\le |a+b| ∣∣a∣−∣b∣∣≤∣a+b∣表示三角形的一条边大于另外两条边之差。 - 【定理1.2.2】【平均值不等式】若有
a
1
,
a
2
,
.
.
.
,
a
n
a_{1},a_{2},...,a_{n}
a1,a2,...,an(
n
n
n个正数),将
a
1
+
a
2
+
.
.
.
+
a
n
n
\frac{a_{1}+a_{2}+...+a_{n}}{n}
na1+a2+...+an称为算术平均,把
a
1
a
2
.
.
.
a
n
n
\sqrt[n]{a_{1}a_{2}...a_{n}}
na1a2...an称为几何平均,
n
1
a
1
+
1
a
2
+
.
.
.
+
1
a
n
\frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+...+\frac{1}{a_{n}}}
a11+a21+...+an1n称为调和平均,则有:
a 1 + a 2 + . . . + a n n ≥ a 1 a 2 . . . a n n ≥ n 1 a 1 + 1 a 2 + . . . + 1 a n \frac{a_{1}+a_{2}+...+a_{n}}{n}\ge \sqrt[n]{a_{1}a_{2}...a_{n}}\ge \frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+...+\frac{1}{a_{n}}} na1+a2+...+an≥na1a2...an≥a11+a21+...+an1n
等号成立的条件是 a 1 = a 2 = . . . = a n a_{1}=a_{2}=...=a_{n} a1=a2=...=an。
【证】对于左边的不等式:
n = 1 , 2 n=1,2 n=1,2已知(中学的)
n = 4 n=4 n=4, a 1 + a 2 + a 3 + a 4 4 ≥ 2 a 1 a 2 + 2 a 3 a 4 4 = a 1 a 2 + a 3 a 4 2 ≥ a 1 a 2 × a 3 a 4 2 = a 1 a 2 a 3 a 4 4 \frac{a_{1}+a_{2}+a_{3}+a_{4}}{4}\ge \frac{2\sqrt{a_{1}a_{2}}+2\sqrt{a_{3}a_{4}}}{4}=\frac{\sqrt{a_{1}a_{2}}+\sqrt{a_{3}a_{4}}}{2} \ge \sqrt[2]{\sqrt{a_{1}a_{2}}\times\sqrt{a_{3}a_{4}}}=\sqrt[4]{a_{1}a_{2}a_{3}a_{4}} 4a1+a2+a3+a4≥42a1a2+2a3a4=2a1a2+a3a4≥2a1a2×a3a4=4a1a2a3a4
n = 8 , . . . , n = 2 k n=8,...,n=2^{k} n=8,...,n=2k不等式成立;
若 n ≠ 2 k n\ne 2^{k} n=2k,则存在 l ∈ N + l\in\mathbb{N}^{+} l∈N+,使得 2 l − 1 < n < 2 l 2^{l-1}<n<2^{l} 2l−1<n<2l
令 a 1 a 2 . . . a n n = a ˉ \sqrt[n]{a_{1}a_{2}...a_{n}}=\bar{a} na1a2...an=aˉ
在 a 1 , a 2 , . . . , a n a_{1},a_{2},...,a_{n} a1,a2,...,an后面加上一些 a ˉ \bar{a} aˉ使得其数量为 2 l 2^{l} 2l,则应该加 2 l − n 2^{l}-n 2l−n个 a ˉ \bar{a} aˉ
则新构成的序列的算术平均为 1 2 l ( a 1 + a 2 + . . . + a n + ( 2 l − n ) a ˉ ) ≥ a 1 a 2 . . . a n ( a ˉ ) 2 l − n 2 l = ( a ˉ ) n ( a ˉ ) 2 l − n 2 l = ( a ˉ ) 2 l 2 l = a ˉ \frac{1}{2^{l}}(a_{1}+a_{2}+...+a_{n}+(2^{l}-n)\bar{a})\ge\sqrt[2^{l}]{a_{1}a_{2}...a_{n}(\bar{a})^{2^{l}-n}}=\sqrt[2^{l}]{(\bar{a})^{n}(\bar{a})^{2^{l}-n}}=\sqrt[2^{l}]{(\bar{a})^{2^{l}}}=\bar{a} 2l1(a1+a2+...+an+(2l−n)aˉ)≥2la1a2...an(aˉ)2l−n=2l(aˉ)n(aˉ)2l−n=2l(aˉ)2l=aˉ
即 a 1 + a 2 + . . . + a n + ( 2 l − n ) a ˉ ≥ 2 l a ˉ a_{1}+a_{2}+...+a_{n}+(2^{l}-n)\bar{a}\ge2^{l}\bar{a} a1+a2+...+an+(2l−n)aˉ≥2laˉ
亦即 a 1 + a 2 + . . . + a n − n a ˉ ≥ 0 a_{1}+a_{2}+...+a_{n}-n\bar{a}\ge 0 a1+a2+...+an−naˉ≥0
所以 a 1 + a 2 + . . . + a n n ≥ a ˉ = a 1 a 2 . . . a n n \frac{a_{1}+a_{2}+...+a_{n}}{n}\ge\bar{a}=\sqrt[n]{a_{1}a_{2}...a_{n}} na1+a2+...+an≥aˉ=na1a2...an
对于右边的不等式:
将 1 a 1 , 1 a 2 , . . . , 1 a n \frac{1}{a_{1}},\frac{1}{a_{2}},...,\frac{1}{a_{n}} a11,a21,...,an1代入左边不等式:
1 a 1 + 1 a 2 + . . . + 1 a n n ≥ 1 a 1 1 a 2 . . . 1 a n n \frac{\frac{1}{a_{1}}+\frac{1}{a_{2}}+...+\frac{1}{a_{n}}}{n}\ge\sqrt[n]{\frac{1}{a_{1}}\frac{1}{a_{2}}...\frac{1}{a_{n}}} na11+a21+...+an1≥na11a21...an1
由于 a 1 , a 2 , . . . , a n a_{1},a_{2},...,a_{n} a1,a2,...,an均为正数,则取倒数得
n 1 a 1 + 1 a 2 + . . . + 1 a n ≤ a 1 a 2 . . . a n n \frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+...+\frac{1}{a_{n}}}\le\sqrt[n]{a_{1}a_{2}...a_{n}} a11+a21+...+an1n≤na1a2...an
即 a 1 a 2 . . . a n n ≥ n 1 a 1 + 1 a 2 + . . . + 1 a n \sqrt[n]{a_{1}a_{2}...a_{n}}\ge\frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+...+\frac{1}{a_{n}}} na1a2...an≥a11+a21+...+an1n
所以不等式右边得证(右边的证法是自己想出来的,不一定严谨,欢迎数院大佬批评指正)