2. 数列极限
2.2 数列极限
【例2.2.3】证明
lim
n
→
∞
a
n
=
1
(
a
>
1
)
\lim\limits_{n\to\infty}\sqrt[n]{a}=1(a>1)
n→∞limna=1(a>1)
【证】对任意给定的
ε
>
0
\varepsilon >0
ε>0,令
a
n
−
1
=
y
n
>
0
(
a
>
1
)
\sqrt[n]{a}-1=y_{n}>0(a>1)
na−1=yn>0(a>1)
a
n
=
1
+
y
n
\sqrt[n]{a}=1+y_{n}
na=1+yn,两边同时取
n
n
n次方得
a
=
(
1
+
y
n
)
2
=
1
+
C
n
1
y
n
+
C
n
2
y
n
2
+
.
.
.
+
C
n
n
y
n
n
>
1
+
n
y
n
a=(1+y_{n})^{2}=1+C_{n}^{1}y_{n}+C_{n}^{2}y_{n}^{2}+...+C_{n}^{n}y_{n}^{n}>1+ny_{n}
a=(1+yn)2=1+Cn1yn+Cn2yn2+...+Cnnynn>1+nyn,则
y
n
<
a
−
1
n
y_{n}<\frac{a-1}{n}
yn<na−1
若要
∣
a
n
−
1
∣
=
∣
y
n
∣
=
a
n
−
1
<
a
−
1
n
<
ε
|\sqrt[n]{a}-1|=|y_{n}|=\sqrt[n]{a}-1<\frac{a-1}{n}<\varepsilon
∣na−1∣=∣yn∣=na−1<na−1<ε即
a
−
1
n
<
ε
\frac{a-1}{n}<\varepsilon
na−1<ε
则
n
>
a
−
1
ε
n>\frac{a-1}{\varepsilon}
n>εa−1,由于
a
>
1
,
ε
>
0
a>1,\varepsilon>0
a>1,ε>0,所以
a
−
1
ε
>
0
\frac{a-1}{\varepsilon}>0
εa−1>0(小于一个大于0的数,就能说明
ε
\varepsilon
ε,
a
−
1
ε
\frac{a-1}{\varepsilon}
εa−1若在区间
(
0
,
1
)
(0,1)
(0,1)内,取整后有可能为0,还得加个1)
所以取
N
=
[
a
−
1
ε
]
+
1
N=[\frac{a-1}{\varepsilon}]+1
N=[εa−1]+1
故当
n
>
N
n>N
n>N时,
∣
a
n
−
1
∣
=
a
n
−
1
<
ε
|\sqrt[n]{a}-1|=\sqrt[n]{a}-1<\varepsilon
∣na−1∣=na−1<ε
所以
lim
n
→
∞
a
n
=
1
(
a
>
1
)
\lim\limits_{n\to\infty}\sqrt[n]{a}=1(a>1)
n→∞limna=1(a>1)
【例2.2.4】证明
lim
n
→
∞
n
n
=
1
\lim\limits_{n\to\infty}\sqrt[n]{n}=1
n→∞limnn=1
【证】对任意给定的
ε
>
0
\varepsilon>0
ε>0,
要证
∣
n
n
−
1
∣
=
n
n
−
1
<
ε
|\sqrt[n]{n}-1|=\sqrt[n]{n}-1<\varepsilon
∣nn−1∣=nn−1<ε(数列的下标
n
n
n是从1开始计算的,也就是
n
≥
1
n\ge 1
n≥1,所以
n
n
≥
1
\sqrt[n]{n}\ge 1
nn≥1,即
∣
n
n
−
1
∣
=
n
n
−
1
|\sqrt[n]{n}-1|=\sqrt[n]{n}-1
∣nn−1∣=nn−1)
令
n
n
−
1
=
y
n
>
0
(
n
=
2
,
3
,
.
.
.
)
\sqrt[n]{n}-1=y_{n}>0(n=2,3,...)
nn−1=yn>0(n=2,3,...)(
n
n
n从2开始
y
n
>
0
y_{n}>0
yn>0)
n
n
=
y
n
+
1
(
n
=
2
,
3
,
.
.
.
)
\sqrt[n]{n}=y_{n}+1(n=2,3,...)
nn=yn+1(n=2,3,...)
即
n
=
1
+
C
n
1
y
n
+
C
n
2
y
n
2
+
.
.
.
+
C
n
n
y
n
n
>
1
+
n
(
n
−
1
)
2
y
n
2
n=1+C_{n}^{1}y_{n}+C_{n}^{2}y_{n}^{2}+...+C_{n}^{n}y_{n}^{n}>1+\frac{n(n-1)}{2}y_{n}^{2}
n=1+Cn1yn+Cn2yn2+...+Cnnynn>1+2n(n−1)yn2
即
y
n
2
<
2
n
y_{n}^{2}<\frac{2}{n}
yn2<n2所以
y
n
<
2
n
y_{n}<\sqrt{\frac{2}{n}}
yn<n2(不等式最左侧有
n
n
n,所以右侧放缩不能放出含
n
n
n的项)
若要
y
n
<
2
n
<
ε
y_{n}<\sqrt{\frac{2}{n}}<\varepsilon
yn<n2<ε
只要
n
>
2
ε
2
n>\frac{2}{\varepsilon ^{2}}
n>ε22
取
N
=
[
2
ε
2
]
N=[\frac{2}{\varepsilon ^{2}}]
N=[ε22]
当
n
>
N
n>N
n>N时,
∣
n
n
−
1
∣
=
n
n
−
1
<
ε
|\sqrt[n]{n}-1|=\sqrt[n]{n}-1<\varepsilon
∣nn−1∣=nn−1<ε
即
lim
n
→
∞
n
n
=
1
\lim\limits_{n\to\infty}\sqrt[n]{n}=1
n→∞limnn=1
【拓展】证明
lim
n
→
∞
n
2
n
=
1
\lim\limits_{n\to\infty}\sqrt[n]{n^{2}}=1
n→∞limnn2=1
【证(我自己写的,请数院大神批评指正)】对任意给定的
ε
>
0
\varepsilon>0
ε>0,
要证
∣
n
2
n
−
1
∣
=
n
2
n
−
1
<
ε
|\sqrt[n]{n^{2}}-1|=\sqrt[n]{n^{2}}-1<\varepsilon
∣nn2−1∣=nn2−1<ε
令
n
2
n
−
1
=
y
n
>
0
(
n
=
2
,
3
,
.
.
.
)
\sqrt[n]{n^{2}}-1=y_{n}>0(n=2,3,...)
nn2−1=yn>0(n=2,3,...)(
n
n
n从2开始
y
n
>
0
y_{n}>0
yn>0)
n
2
n
=
y
n
+
1
(
n
=
2
,
3
,
.
.
.
)
\sqrt[n]{n^{2}}=y_{n}+1(n=2,3,...)
nn2=yn+1(n=2,3,...)
即
n
2
=
1
+
C
n
1
y
n
+
C
n
2
y
n
2
+
.
.
.
+
C
n
n
y
n
n
>
1
+
n
!
3
!
(
n
−
3
)
!
y
n
3
=
1
+
n
(
n
−
1
)
(
n
−
2
)
3
×
2
×
1
y
n
3
=
1
+
n
(
n
−
1
)
(
n
−
2
)
6
y
n
3
n^{2}=1+C_{n}^{1}y_{n}+C_{n}^{2}y_{n}^{2}+...+C_{n}^{n}y_{n}^{n}>1+\frac{n!}{3!(n-3)!}y_{n}^{3}=1+\frac{n(n-1)(n-2)}{3\times 2\times 1}y_{n}^{3}=1+\frac{n(n-1)(n-2)}{6}y_{n}^{3}
n2=1+Cn1yn+Cn2yn2+...+Cnnynn>1+3!(n−3)!n!yn3=1+3×2×1n(n−1)(n−2)yn3=1+6n(n−1)(n−2)yn3
即
n
2
−
1
>
n
(
n
−
1
)
(
n
−
2
)
6
y
n
3
n^{2}-1>\frac{n(n-1)(n-2)}{6}y_{n}^{3}
n2−1>6n(n−1)(n−2)yn3
亦即
(
n
+
1
)
(
n
−
1
)
>
n
(
n
−
1
)
(
n
−
2
)
6
y
n
3
(n+1)(n-1)>\frac{n(n-1)(n-2)}{6}y_{n}^{3}
(n+1)(n−1)>6n(n−1)(n−2)yn3
所以
6
(
n
+
1
)
(
n
−
1
)
(
n
−
2
)
>
y
n
3
\frac{6(n+1)}{(n-1)(n-2)}>y_{n}^{3}
(n−1)(n−2)6(n+1)>yn3
即
y
n
3
<
6
(
n
+
1
)
(
n
−
1
)
(
n
−
2
)
y_{n}^{3}<\frac{6(n+1)}{(n-1)(n-2)}
yn3<(n−1)(n−2)6(n+1)所以
y
n
<
6
(
n
+
1
)
(
n
−
1
)
(
n
−
2
)
3
<
6
(
n
−
1
)
(
n
−
1
)
(
n
−
2
)
3
=
6
n
−
2
3
y_{n}<\sqrt[3]{\frac{6(n+1)}{(n-1)(n-2)}}<\sqrt[3]{\frac{6(n-1)}{(n-1)(n-2)}}=\sqrt[3]{\frac{6}{n-2}}
yn<3(n−1)(n−2)6(n+1)<3(n−1)(n−2)6(n−1)=3n−26(不等式最左侧有
n
n
n,所以右侧放缩不能放出含
n
n
n的项)
若要
y
n
<
6
n
−
2
3
<
ε
y_{n}<\sqrt[3]{\frac{6}{n-2}}<\varepsilon
yn<3n−26<ε
只要
n
−
2
>
6
ε
3
n-2>\frac{6}{\varepsilon ^{3}}
n−2>ε36
即
n
>
6
ε
3
+
2
n>\frac{6}{\varepsilon ^{3}}+2
n>ε36+2
取
N
=
[
6
ε
3
+
2
]
N=[\frac{6}{\varepsilon ^{3}}+2]
N=[ε36+2](这时候肯定满足了
N
N
N是正整数)
当
n
>
N
n>N
n>N时,
∣
n
2
n
−
1
∣
=
n
2
n
−
1
<
ε
|\sqrt[n]{n^{2}}-1|=\sqrt[n]{n^{2}}-1<\varepsilon
∣nn2−1∣=nn2−1<ε
即
lim
n
→
∞
n
2
n
=
1
\lim\limits_{n\to\infty}\sqrt[n]{n^{2}}=1
n→∞limnn2=1
…
以此类推,
lim
n
→
∞
n
k
n
=
1
,
k
∈
N
+
\lim\limits_{n\to\infty}\sqrt[n]{n^{k}}=1,k\in\mathbb{N}^{+}
n→∞limnnk=1,k∈N+
【例2.2.5】证明
lim
n
→
∞
n
2
+
1
2
n
2
−
7
n
=
1
2
\lim\limits_{n\to\infty}\frac{n^{2}+1}{2n^{2}-7n}=\frac{1}{2}
n→∞lim2n2−7nn2+1=21
【证】对任意给定的
ε
>
0
\varepsilon>0
ε>0
要使得
∣
n
2
+
1
2
n
2
−
7
n
−
1
2
∣
=
∣
2
n
2
+
2
−
2
n
2
+
7
n
2
(
2
n
2
−
7
n
)
∣
=
∣
7
n
+
2
2
(
2
n
2
−
7
n
)
∣
|\frac{n^{2}+1}{2n^{2}-7n}-\frac{1}{2}|=|\frac{2n^{2}+2-2n^{2}+7n}{2(2n^{2}-7n)}|=|\frac{7n+2}{2(2n^{2}-7n)}|
∣2n2−7nn2+1−21∣=∣2(2n2−7n)2n2+2−2n2+7n∣=∣2(2n2−7n)7n+2∣
当
n
>
3
n>3
n>3(找
N
N
N比3大就行,数列的有限项不影响数列极限取值)时,
则
∣
n
2
+
1
2
n
2
−
7
n
−
1
2
∣
=
7
n
+
2
2
(
2
n
2
−
7
n
)
|\frac{n^{2}+1}{2n^{2}-7n}-\frac{1}{2}|=\frac{7n+2}{2(2n^{2}-7n)}
∣2n2−7nn2+1−21∣=2(2n2−7n)7n+2
当
n
>
3
n>3
n>3的时候,
7
n
+
2
<
7
n
+
n
=
8
n
7n+2<7n+n=8n
7n+2<7n+n=8n
为了能够放缩出更简单的形式,我们要想尽办法找到比
2
(
2
n
2
−
7
n
)
=
2
n
(
2
n
−
7
)
2(2n^{2}-7n)=2n(2n-7)
2(2n2−7n)=2n(2n−7)分母小的,分母小,整个分式越大,
2
n
(
2
n
−
7
)
2n(2n-7)
2n(2n−7)不可能大于
4
n
2
4n^{2}
4n2,因为那样会出现
−
7
=
0
-7=0
−7=0的矛盾情况,于是尝试找
2
n
(
2
n
−
7
)
>
2
n
⋅
n
2n(2n-7)>2n\cdot n
2n(2n−7)>2n⋅n的情况,即
2
n
−
7
>
n
2n-7>n
2n−7>n即
n
>
7
n>7
n>7(前7项都是有限项,不耽误后面无限项趋近于极限值)的时候,有:
2
(
2
n
2
−
7
n
)
=
2
n
(
2
n
−
7
)
=
−
2
n
2(2n^{2}-7n)=2n(2n-7)=-2n
2(2n2−7n)=2n(2n−7)=−2n
若要
7
n
+
2
2
(
2
n
2
−
7
n
)
<
8
n
2
n
2
=
4
n
<
ε
\frac{7n+2}{2(2n^{2}-7n)}<\frac{8n}{2n^{2}}=\frac{4}{n}<\varepsilon
2(2n2−7n)7n+2<2n28n=n4<ε,还要保证
n
>
7
n>7
n>7
即取
N
=
max
{
[
4
ε
]
,
7
}
N=\max\{[\frac{4}{\varepsilon}],7\}
N=max{[ε4],7}(视频课中写的是
6
6
6,也可以,保证
2
n
(
2
n
−
7
)
≥
2
n
⋅
n
2n(2n-7)\ge2n\cdot n
2n(2n−7)≥2n⋅n,则
7
n
+
2
2
(
2
n
2
−
7
n
)
≤
8
n
2
n
2
=
4
n
<
ε
\frac{7n+2}{2(2n^{2}-7n)}\le\frac{8n}{2n^{2}}=\frac{4}{n}<\varepsilon
2(2n2−7n)7n+2≤2n28n=n4<ε,最后是小于
ε
\varepsilon
ε且能将不等式不等号方向顺下来就行)
当
n
>
N
n>N
n>N时,
∣
n
2
+
1
2
n
2
−
7
n
−
1
2
∣
<
4
n
<
ε
|\frac{n^{2}+1}{2n^{2}-7n}-\frac{1}{2}|<\frac{4}{n}<\varepsilon
∣2n2−7nn2+1−21∣<n4<ε
所以
lim
n
→
∞
n
2
+
1
2
n
2
−
7
n
=
1
2
\lim\limits_{n\to\infty}\frac{n^{2}+1}{2n^{2}-7n}=\frac{1}{2}
n→∞lim2n2−7nn2+1=21
【例2.2.6】设
lim
n
→
∞
a
n
=
a
\lim\limits_{n\to\infty}a_{n}=a
n→∞liman=a,证明
lim
n
→
∞
a
1
+
a
2
+
.
.
.
+
a
n
n
=
a
\lim\limits_{n\to\infty}\frac{a_{1}+a_{2}+...+a_{n}}{n}=a
n→∞limna1+a2+...+an=a
【证】(1)设
a
=
0
a=0
a=0对任意给定的
ε
>
0
\varepsilon>0
ε>0,存在
N
1
N_{1}
N1,当
n
>
N
1
n>N_{1}
n>N1时,
∣
a
n
∣
<
ε
2
|a_{n}|<\frac{\varepsilon}{2}
∣an∣<2ε(任意给定,只要保证大于0就行,所以取
ε
=
ε
2
>
0
\varepsilon=\frac{\varepsilon}{2}>0
ε=2ε>0)
a
1
+
a
2
+
.
.
.
+
a
n
n
=
a
1
+
a
2
+
.
.
.
+
a
N
1
n
+
a
N
1
+
1
+
a
N
1
+
2
+
.
.
.
+
a
n
n
\frac{a_{1}+a_{2}+...+a_{n}}{n}=\frac{a_{1}+a_{2}+...+a_{N_{1}}}{n}+\frac{a_{N_{1}+1}+a_{N_{1}+2}+...+a_{n}}{n}
na1+a2+...+an=na1+a2+...+aN1+naN1+1+aN1+2+...+an
由于当
n
>
N
1
n>N_{1}
n>N1时,
∣
a
n
∣
<
ε
2
|a_{n}|<\frac{\varepsilon}{2}
∣an∣<2ε(讨论
a
a
a为0也是为了这里方便一些,更是为了后续证明
a
≠
0
a\ne 0
a=0的情况),且
N
1
+
1
,
N
1
+
2
,
.
.
.
,
a
n
>
N
1
N_{1}+1,N_{1}+2,...,a_{n}>N_{1}
N1+1,N1+2,...,an>N1,所以
∣
a
N
1
+
1
+
a
N
1
+
2
+
.
.
.
+
a
n
n
∣
≤
∣
a
N
1
+
1
∣
+
∣
a
N
1
+
2
∣
+
.
.
.
+
∣
a
n
∣
n
<
(
n
−
(
N
1
+
1
)
+
1
)
⋅
ε
2
n
=
(
n
−
N
1
)
⋅
ε
2
n
<
n
⋅
ε
2
n
=
ε
2
|\frac{a_{N_{1}+1}+a_{N_{1}+2}+...+a_{n}}{n}|\le\frac{|a_{N_{1}+1}|+|a_{N_{1}+2}|+...+|a_{n}|}{n}<\frac{(n-(N_{1}+1)+1)\cdot\frac{\varepsilon}{2}}{n}=\frac{(n-N_{1})\cdot\frac{\varepsilon}{2}}{n}<\frac{n\cdot\frac{\varepsilon}{2}}{n}=\frac{\varepsilon}{2}
∣naN1+1+aN1+2+...+an∣≤n∣aN1+1∣+∣aN1+2∣+...+∣an∣<n(n−(N1+1)+1)⋅2ε=n(n−N1)⋅2ε<nn⋅2ε=2ε
由于
a
1
+
a
2
+
.
.
.
+
a
N
1
a_{1}+a_{2}+...+a_{N_{1}}
a1+a2+...+aN1是确定的有限项的和,则取
N
>
N
1
N>N_{1}
N>N1,使得
n
>
N
>
N
1
n>N>N_{1}
n>N>N1时,有
∣
a
1
+
a
2
+
.
.
.
+
a
N
1
n
∣
<
ε
2
|\frac{a_{1}+a_{2}+...+a_{N_{1}}}{n}|<\frac{\varepsilon}{2}
∣na1+a2+...+aN1∣<2ε(这里陈纪修老师应该是默认我们证明过了
lim
n
→
∞
c
n
=
0
,
c
\lim\limits_{n\to\infty}\frac{c}{n}=0,c
n→∞limnc=0,c为常数,取
N
>
N
1
N>N_{1}
N>N1是为了保证
a
1
+
a
2
+
.
.
.
+
a
N
1
a_{1}+a_{2}+...+a_{N_{1}}
a1+a2+...+aN1是有限项,这样有限项的和就是一个常数,记
a
1
+
a
2
+
.
.
.
+
a
N
1
=
c
a_{1}+a_{2}+...+a_{N_{1}}=c
a1+a2+...+aN1=c,对于任意给定的
ε
>
0
\varepsilon >0
ε>0,则
∣
c
n
−
0
∣
=
∣
c
n
∣
=
∣
c
∣
n
<
ε
2
|\frac{c}{n}-0|=|\frac{c}{n}|=\frac{|c|}{n}<\frac{\varepsilon}{2}
∣nc−0∣=∣nc∣=n∣c∣<2ε,取
N
=
[
2
∣
c
∣
ε
]
+
1
N=[\frac{2|c|}{\varepsilon}]+1
N=[ε2∣c∣]+1,当
n
>
N
n>N
n>N时,有
∣
c
n
−
0
∣
=
∣
c
n
∣
<
ε
2
|\frac{c}{n}-0|=|\frac{c}{n}|<\frac{\varepsilon}{2}
∣nc−0∣=∣nc∣<2ε,本题这里是相当于是知道了
lim
n
→
∞
c
n
=
0
\lim\limits_{n\to\infty}\frac{c}{n}=0
n→∞limnc=0推出
∣
c
n
∣
<
ε
2
|\frac{c}{n}|<\frac{\varepsilon}{2}
∣nc∣<2ε,这里想了好久,要不然这篇博客也不会这么久不发出去)
所以
∣
a
1
+
a
2
+
.
.
.
+
a
n
n
∣
=
∣
a
1
+
a
2
+
.
.
.
+
a
N
1
n
∣
+
∣
a
N
1
+
1
+
a
N
1
+
2
+
.
.
.
+
a
n
n
∣
<
ε
2
+
ε
2
=
ε
|\frac{a_{1}+a_{2}+...+a_{n}}{n}|=|\frac{a_{1}+a_{2}+...+a_{N_{1}}}{n}|+|\frac{a_{N_{1}+1}+a_{N_{1}+2}+...+a_{n}}{n}|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
∣na1+a2+...+an∣=∣na1+a2+...+aN1∣+∣naN1+1+aN1+2+...+an∣<2ε+2ε=ε
所以
lim
n
→
∞
a
1
+
a
2
+
.
.
.
+
a
n
n
=
a
=
0
\lim\limits_{n\to\infty}\frac{a_{1}+a_{2}+...+a_{n}}{n}=a=0
n→∞limna1+a2+...+an=a=0
(2)当
a
≠
0
a\ne 0
a=0时,由于
lim
n
→
∞
a
n
=
a
\lim\limits_{n\to\infty}a_{n}=a
n→∞liman=a,则
{
a
n
−
a
}
\{a_{n}-a\}
{an−a}的极限是无穷小量.(上一节课无穷小量的定义)
lim
n
→
∞
(
a
1
+
a
2
+
.
.
.
+
a
n
n
−
a
)
=
lim
n
→
∞
a
1
−
a
+
a
2
−
a
+
.
.
.
+
a
n
−
a
n
\lim\limits_{n\to\infty}(\frac{a_{1}+a_{2}+...+a_{n}}{n}-a)=\lim\limits_{n\to\infty}\frac{a_{1}-a+a_{2}-a+...+a_{n}-a}{n}
n→∞lim(na1+a2+...+an−a)=n→∞limna1−a+a2−a+...+an−a
由于(1)中已经证明的结论,由于
{
a
n
−
a
}
\{a_{n}-a\}
{an−a}的极限是无穷小量即
lim
n
→
∞
(
a
n
−
a
)
=
0
\lim\limits_{n\to\infty}(a_{n}-a)=0
n→∞lim(an−a)=0,所以
lim
n
→
∞
(
a
1
+
a
2
+
.
.
.
+
a
n
n
−
a
)
=
lim
n
→
∞
a
1
−
a
+
a
2
−
a
+
.
.
.
+
a
n
−
a
n
=
0
⇔
lim
n
→
∞
a
1
+
a
2
+
.
.
.
+
a
n
n
=
a
\lim\limits_{n\to\infty}(\frac{a_{1}+a_{2}+...+a_{n}}{n}-a)=\lim\limits_{n\to\infty}\frac{a_{1}-a+a_{2}-a+...+a_{n}-a}{n}=0\Leftrightarrow\lim\limits_{n\to\infty}\frac{a_{1}+a_{2}+...+a_{n}}{n}=a
n→∞lim(na1+a2+...+an−a)=n→∞limna1−a+a2−a+...+an−a=0⇔n→∞limna1+a2+...+an=a
【注】用到了上节课的知识:若
lim
n
→
∞
x
n
=
a
⇔
{
x
n
−
a
}
\lim\limits_{n\to \infty}x_{n}=a\Leftrightarrow\{x_{n}-a\}
n→∞limxn=a⇔{xn−a}是无穷小量。
2.2.5 数列极限的性质
记号:
∀
\forall
∀ 对于每一个,任意的
∃
\exists
∃ 存在,可以找到
lim
n
→
∞
x
n
=
a
\lim\limits_{n\to\infty}x_{n}=a
n→∞limxn=a的定义用记号写为:
∀
ε
>
0
,
∃
N
,
∀
n
>
N
:
∣
x
n
−
a
∣
<
ε
\forall\varepsilon>0,\exists N,\forall n>N: |x_{n}-a|<\varepsilon
∀ε>0,∃N,∀n>N:∣xn−a∣<ε
- 唯一性:若
lim
n
→
∞
x
n
=
a
,
lim
n
→
∞
x
n
=
b
\lim\limits_{n\to\infty}x_{n}=a,\lim\limits_{n\to\infty}x_{n}=b
n→∞limxn=a,n→∞limxn=b,则
a
=
b
a=b
a=b
【证】 ∀ ε > 0 , ∃ N 1 , ∀ n > N 1 : ∣ x n − a ∣ < ε 2 \forall\varepsilon>0,\exists N_{1},\forall n>N_{1}:|x_{n}-a|<\frac{\varepsilon}{2} ∀ε>0,∃N1,∀n>N1:∣xn−a∣<2ε(取得巧妙的 ε 2 \frac{\varepsilon}{2} 2ε)
∀ ε > 0 , ∃ N 2 , ∀ n > N 2 : ∣ x n − a ∣ < ε 2 \forall\varepsilon>0,\exists N_{2},\forall n>N_{2}:|x_{n}-a|<\frac{\varepsilon}{2} ∀ε>0,∃N2,∀n>N2:∣xn−a∣<2ε
取 N = max { N 1 , N 2 } , ∀ n > N : N=\max\{N_{1},N_{2}\},\forall n>N: N=max{N1,N2},∀n>N:
由三角不等式 ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ ||a|-|b||\le |a+b| \le |a|+|b| ∣∣a∣−∣b∣∣≤∣a+b∣≤∣a∣+∣b∣
∣ x n − a ∣ + ∣ x n − b ∣ = ∣ a − x n ∣ + ∣ x n − b ∣ ≥ ∣ a − x n + x n − b ∣ = ∣ a − b ∣ |x_{n}-a|+|x_{n}-b|=|a-x_{n}|+|x_{n}-b|\ge|a-x_{n}+x_{n}-b|=|a-b| ∣xn−a∣+∣xn−b∣=∣a−xn∣+∣xn−b∣≥∣a−xn+xn−b∣=∣a−b∣
则 ∣ a − b ∣ ≤ ∣ x n − a ∣ + ∣ x n − b ∣ < ε 2 + ε 2 = ε |a-b|\le|x_{n}-a|+|x_{n}-b|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon ∣a−b∣≤∣xn−a∣+∣xn−b∣<2ε+2ε=ε
由 ε \varepsilon ε的任意性可知, a = b a=b a=b - 有界性:有数列 { x n } \{x_{n}\} {xn},若 ∃ M ∈ R , ∀ n ∈ N + \exists M\in\mathbb{R},\forall n\in\mathbb{N}^{+} ∃M∈R,∀n∈N+成立 x n ≤ M x_{n}\le M xn≤M,则 M M M是 { x n } \{x_{n}\} {xn}的一个上界,或称 { x n } \{x_{n}\} {xn}有上界;若 ∃ m ∈ R , ∀ n ∈ N + \exists m\in\mathbb{R},\forall n\in\mathbb{N}^{+} ∃m∈R,∀n∈N+成立 x n ≥ m x_{n}\ge m xn≥m,则 m m m是 { x n } \{x_{n}\} {xn}的一个下界,或称 { x n } \{x_{n}\} {xn}有下界; { x n } \{x_{n}\} {xn}既有上界又有下界,则称 { x n } \{x_{n}\} {xn}有界;有界的另一定义: ∃ X ∈ R + , ∀ n ∈ N + \exists X\in\mathbb{R}^{+},\forall n\in\mathbb{N}^{+} ∃X∈R+,∀n∈N+成立,则 ∣ x n ∣ ≤ X |x_{n}|\le X ∣xn∣≤X.
【定理2.2.2】收敛数列一定有界。
【证】若
{
x
n
}
\{x_{n}\}
{xn}收敛于
a
a
a,
∀
ε
>
0
,
∃
N
,
∀
n
>
N
:
∣
x
n
−
a
∣
<
ε
\forall\varepsilon>0,\exists N,\forall n>N: |x_{n}-a|<\varepsilon
∀ε>0,∃N,∀n>N:∣xn−a∣<ε,取
ε
=
1
\varepsilon=1
ε=1,存在
N
,
∀
n
>
N
:
∣
x
n
−
a
∣
<
1
⇔
a
−
1
<
x
n
<
a
+
1
N,\forall n>N:|x_{n}-a|<1\Leftrightarrow a-1<x_{n}<a+1
N,∀n>N:∣xn−a∣<1⇔a−1<xn<a+1
取
M
=
max
{
x
1
,
x
2
,
.
.
.
,
x
n
,
a
+
1
}
,
m
=
min
{
x
1
,
x
2
,
.
.
.
,
x
n
,
a
−
1
}
M=\max\{x_{1},x_{2},...,x_{n},a+1\},m=\min\{x_{1},x_{2},...,x_{n},a-1\}
M=max{x1,x2,...,xn,a+1},m=min{x1,x2,...,xn,a−1}(有限个数,找到数列中的最大值项和
a
+
1
a+1
a+1取最大值,找到数列中的最小值与
a
−
1
a-1
a−1取最小值,那么这个最大值肯定是
{
x
n
}
\{x_{n}\}
{xn}的一个上界,最小值肯定是
{
x
n
}
\{x_{n}\}
{xn}的一个下界)
∀
n
∈
N
+
,
m
≤
x
n
≤
M
\forall n\in\mathbb{N}^{+},m\le x_{n}\le M
∀n∈N+,m≤xn≤M
即收敛数列一定有界。