【数学分析笔记】第3章第2节 连续函数(3)

3. 函数极限与连续函数

3.2 连续函数

【Riemann(黎曼)函数】 R ( x ) = { 0 , x 是无理数 1 p , x = q p , p ∈ N + , q ∈ Z 且 q ≠ 0 , p 与 q 互质 1 , x = 0 R(x)=\left\{\begin{matrix} 0&,x是无理数 \\ \frac{1}{p}&,x=\frac{q}{p},p\in\mathbb{N}^{+},q\in\mathbb{Z}且q\ne 0,p与q互质\\ 1&,x=0 \end{matrix}\right. R(x)= 0p11,x是无理数,x=pq,pN+,qZq=0,pq互质,x=0,( x = 0 x=0 x=0可以写成 0 1 \frac{0}{1} 10, x = 1 x=1 x=1可以写成 1 1 = 1 , R ( 1 ) = R ( 1 1 ) = 1 1 = 1 \frac{1}{1}=1,R(1)=R(\frac{1}{1})=\frac{1}{1}=1 11=1,R(1)=R(11)=11=1 x = 2 , R ( 2 ) = R ( 2 1 ) = 1 1 = 1 x=2,R(2)=R(\frac{2}{1})=\frac{1}{1}=1 x=2R(2)=R(12)=11=1,整数点都是1,这是为了保持周期性,在 x x x是整数点,它的值都是1,而在 ( 0 , 1 ) (0,1) (0,1)内,其图像如下,它是以1为周期的函数,在 ( 1 , 2 ) . . . (1,2)... (1,2)...内同理)

,证明: ∀ x 0 ∈ ( − ∞ , + ∞ ) , lim ⁡ x → x 0 R ( x ) = 0 \forall x_{0}\in(-\infty,+\infty),\lim\limits_{x\to x_{0}}R(x)=0 x0(,+),xx0limR(x)=0,即 R ( x ) R(x) R(x)在一切无理点连续,在有理点不连续。
【证】由 R ( x ) R(x) R(x)具有周期性,周期为1,只考虑 [ 0 , 1 ] [0,1] [0,1]当中的点
∀ x 0 ∈ [ 0 , 1 ] \forall x_{0}\in[0,1] x0[0,1],即证明 lim ⁡ x → x 0 R ( x ) = 0 \lim\limits_{x\to x_{0}}R(x)=0 xx0limR(x)=0
[ 0 , 1 ] [0,1] [0,1]中,分母为1的数 0 1 , 1 1 \frac{0}{1},\frac{1}{1} 10,11
分母为2的数 1 2 \frac{1}{2} 21
分母为3的数 1 3 , 2 3 \frac{1}{3},\frac{2}{3} 31,32

分母为 k , k ∈ N + k,k\in\mathbb{N}^{+} k,kN+的数至多 k k k
对任意的正整数 k k k [ 0 , 1 ] [0,1] [0,1]分母小于等于(陈老师视频一开始说错了,后来改正了) k k k的有理数至多有限个,即就是有限个。
∀ ε > 0 \forall \varepsilon>0 ε>0,找 δ > 0 \delta>0 δ>0,记 k = [ 1 ε ] k=[\frac{1}{\varepsilon}] k=[ε1],在 [ 0 , 1 ] [0,1] [0,1]中分母小于等于 k k k的有理数是有限个,记为 r 1 , r 2 , . . . , r n r_{1},r_{2},...,r_{n} r1,r2,...,rn,令 δ = min ⁡ 1 ⩽ i ⩽ n r i ≠ x 0 { ∣ r i − x 0 ∣ } > 0 \delta=\min\limits_{\substack{1 \leqslant i \leqslant n \\ r_{i} \neq x_{0}}}\left\{\left|r_{i}-x_{0}\right|\right\}>0 δ=1inri=x0min{rix0}>0
∀ x ∈ [ 0 , 1 ] ( 0 < ∣ x − x 0 ∣ < δ ) \forall x\in[0,1](0<|x-x_{0}|<\delta) x[0,1](0<xx0<δ)要证明 ∣ R ( x ) − 0 ∣ = ∣ R ( x ) ∣ = R ( x ) < ε |R(x)-0|=|R(x)|=R(x)<\varepsilon R(x)0∣=R(x)=R(x)<ε
(1) x x x是无理数, R ( x ) = 0 R(x)=0 R(x)=0
(2) x x x是有理数,其分母大于 k = [ 1 ε ] k=[\frac{1}{\varepsilon}] k=[ε1](在 [ 0 , 1 ] [0,1] [0,1]区间内除无理数,分母小于等于 k k k的有理数,只剩下分母大于 k k k的有理数,因为我们要找的范围是 0 < ∣ x − x 0 ∣ < δ 0<|x-x_{0}|<\delta 0<xx0<δ,是比 r i r_{i} ri x 0 x_{0} x0距离还小的数,也就是剩下的这两种情况刚才我们没取定讨论的 x x x是无理数和 x x x是有理数,其分母大于 k = [ 1 ε ] k=[\frac{1}{\varepsilon}] k=[ε1],刚才讨论都取成了 δ \delta δ的范围即邻域中,我自己的理解,欢迎数院大神批评指正)
对于情况(2), x x x的分母 > k ≥ [ 1 ε ] + 1 >k\ge[ \frac{1}{\varepsilon}]+1 >k[ε1]+1 1 ε < [ 1 ε ] + 1 \frac{1}{\varepsilon}<\left[\frac{1}{\varepsilon}\right]+1 ε1<[ε1]+1,即 R ( x ) ⩽ 1 [ 1 ε ] + 1 < 1 1 ε = ε R(x) \leqslant \frac{1}{\left[\frac{1}{\varepsilon}\right]+1}<\frac{1}{\frac{1}{\varepsilon}}=\varepsilon R(x)[ε1]+11<ε11=ε
对于情况(1),由于 x x x是无理数, R ( x ) = 0 < ε R(x)=0<\varepsilon R(x)=0<ε
综上所述 ∣ R ( x ) − 0 ∣ < ε |R(x)-0|<\varepsilon R(x)0∣<ε
所以 ∀ x 0 ∈ ( − ∞ , + ∞ ) , lim ⁡ x → x 0 R ( x ) = 0 ≠ 1 p , p ∈ N + \forall x_{0}\in(-\infty,+\infty),\lim\limits_{x\to x_{0}}R(x)=0\ne\frac{1}{p},p\in\mathbb{N}^{+} x0(,+),xx0limR(x)=0=p1,pN+
所以 R ( x ) R(x) R(x)在一切无理点连续,在有理点不连续。
【注】 ∀ ε > 0 \forall \varepsilon>0 ε>0 [ 0 , 1 ] [0,1] [0,1] R ( x ) ≥ ε R(x)\ge \varepsilon R(x)ε的点的至多有限个。


【例3.2.8】证明:区间 ( a , b ) (a,b) (a,b)上的单调函数的不连续点必为第一类的(跳跃间断点)。
【证】不妨设 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)上单调增加,若 x 0 ∈ ( a , b ) x_{0}\in(a,b) x0(a,b) { f ( x ) ∣ x ∈ ( a , x 0 ) } \{f(x)|x\in(a,x_{0})\} {f(x)x(a,x0)}有上界必有上确界,记该上确界为 α \alpha α,即 α = sup ⁡ { f ( x ) ∣ x ∈ ( a , x 0 ) } \alpha=\sup\{f(x)|x\in(a,x_{0})\} α=sup{f(x)x(a,x0)}
∀ x ∈ ( a , x 0 ) \forall x\in(a,x_{0}) x(a,x0),有 f ( x ) ≤ α f(x)\le \alpha f(x)α,即 ∀ ε > 0 , ∃ x ′ ∈ ( a , x 0 ) \forall\varepsilon>0,\exists x'\in(a,x_{0}) ε>0,x(a,x0)使得 f ( x ′ ) > α − ε f(x')>\alpha - \varepsilon f(x)>αε(不是上界,就可以找到一点函数值比 α − ε \alpha - \varepsilon αε大)

δ = x 0 − x ′ , ∀ x ( − δ < ∣ x − x 0 ∣ < 0 ) \delta = x_{0}-x',\forall x(-\delta<|x-x_{0}|<0) δ=x0x,x(δ<xx0<0)

由于 f ( x ) f(x) f(x)单调增加,所以 α − ε < f ( x ′ ) ≤ f ( x ) ≤ α \alpha - \varepsilon<f(x')\le f(x)\le \alpha αε<f(x)f(x)α ∣ f ( x ) − α ∣ < ε |f(x)-\alpha|<\varepsilon f(x)α<ε
lim ⁡ x → x 0 − f ( x ) = α \lim\limits_{x\to x_{0}^{-}}f(x)=\alpha xx0limf(x)=α
同理 lim ⁡ x → x 0 + f ( x ) = β \lim\limits_{x\to x_{0}^{+}}f(x)=\beta xx0+limf(x)=β β = inf ⁡ { f ( x ) ∣ x ∈ ( x 0 , b ) } \beta=\inf\{f(x)|x\in(x_{0},b)\} β=inf{f(x)x(x0,b)}
【注】若 f ( x ) f(x) f(x) g ( x ) g(x) g(x)都是单调增加函数, f ( x ) − g ( x ) f(x)-g(x) f(x)g(x)有界变差函数

3.2.8 反函数

映射 f : X ⟼ Y f:\textbf{X}\longmapsto \textbf{Y} f:XY是单射,则逆映射 f − 1 : R f ⟼ X f^{-1}:\textbf{R}_{f}\longmapsto \textbf{X} f1:RfX,如果一个单射是函数,则其逆映射是反函数。

  • 存在性
  • 连续性
  • 可导性(以后讲)

【定理3.2.1】【反函数存在定理】若 f ( x ) f(x) f(x)在定义域 D f \textbf{D}_{f} Df严格单调增加(减少),则存在 f f f的反函数 x = f − 1 ( y ) , y ∈ R f x=f^{-1}(y),y\in\textbf{R}_{f} x=f1(y),yRf f − 1 ( y ) f^{-1}(y) f1(y)也严格单调增加(减少)。
【证】不妨设 x 1 < x 2 ⇒ f ( x 1 ) < f ( x 2 ) ( y 1 < y 2 ) x_{1}<x_{2}\Rightarrow f(x_{1})<f(x_{2})(y_{1}<y_{2}) x1<x2f(x1)<f(x2)(y1<y2)
x 1 ≠ x 2 ⇒ y 1 ≠ y 2 x_{1}\ne x_{2}\Rightarrow y_{1}\ne y_{2} x1=x2y1=y2(单射)
所以必存在反函数 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y)
∀ y 1 < y 2 : \forall y_{1}<y_{2}: y1<y2: x 1 > x 2 x_{1}>x_{2} x1>x2与严格单调增加矛盾,若 x 1 = x 2 x_{1}=x_{2} x1=x2与函数定义矛盾(矛盾点在一个 x x x对应两个 y y y了)
f − 1 ( y ) f^{-1}(y) f1(y)也严格单调增加。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔理沙偷走了BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值