博弈论基础习题集

本文介绍了多个博弈论相关的题目,包括sg函数、尼姆博弈和巴氏博弈等。通过分析解题思路和代码实现,阐述了如何判断先手和后手的胜负,并提供了具体的策略。例如,在尼姆博弈中,确保亦或和为零则先手输;在巴氏博弈中,特定条件下的报价策略决定胜利方。同时,文章还讨论了不同博弈类型的通用解题方法,如sg函数的pn点特性及其在dp中的应用。
摘要由CSDN通过智能技术生成

http://acm.hust.edu.cn/vjudge/contest/view.action?cid=108499#overview

题目分类:

sg函数:A,E,H,I

尼姆博弈:B,C,

巴氏博弈:D,F

np点性质或总结规律:G

A.题意:每组测试用例包含三个整数m,n,p.以n,m,p都为零结束。表示三堆石子,每堆石子的个数。每步取走石子个数满足斐波那契数列(从1开始的)判断先手赢还是后手赢。

分析:直接利用sg函数,注意要生成每步可以取走石子的个数

代码:

dfs递归版本
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cstdlib>
#include <climits>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <cctype>
typedef long long ll;
const int MOD=10e9+7;
const int INF=0x7fffffff;
const double ESP=10e-7;
const double Pi=acos(-1.0);
const int dr[]= {0,0,1,-1,1,1,-1,-1};
const int dc[]= {-1,1,0,0,-1,1,-1,1};
using namespace std;
const int MAXN=1005;
//bool vis[MAXN];
int a[MAXN],sg[MAXN];
void init()
{
    a[1] = 1,a[2] = 2;
    for(int i = 3; i < 20; i ++)
    {
        a[i] = a[i - 1] + a[i - 2];
       // cout<<a[i]<<endl;
    }
}/*
int SG(int now){
	int i,tem;
	int next[20];
	memset(next,0,sizeof(next));
	for(i=1;a[i]<=now;i++){
		tem=now-a[i];
		if(sg[tem]==-1)
			sg[tem]=SG(tem);
		next[sg[tem]]=1;
	}
	for(i=0;;i++)
		if(next[i]==0){
			return i;
		}
}*/
int SG(int x)
{
bool vis[25];
    memset(vis,false,sizeof(vis));
    int temp;
    for(int i = 1;a[i] <= x ; i ++)
    {
        //cout<<a[i]<<endl;

            temp = x - a[i];
            if(sg[temp] == -1)
            {
                sg[temp] = SG(temp);
            }

            vis[sg[temp]] = true;

    }
    for(int i = 0;; i ++)
    {
        if(vis[i] == false)
        {
            return i;
        }
    }

}
int main()
{
    //freopen("in.txt","r",stdin);
    int m,n,p;
    init();
    while(scanf("%d%d%d",&m,&n,&p))
    {
        memset(sg,-1,sizeof(sg));
        if(n == 0 && m == 0 && p == 0)
            break;
       // cout<<SG(m)<<SG(n)<<SG(p)<<endl;

        if((SG(n) ^ SG(m) ^ SG(p)) != 0)
            printf("Fibo\n");
        else
            printf("Nacci\n");
    }

    return 0;
}

//打表版
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cstdlib>
#include <climits>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <cctype>
typedef long long ll;
const int MOD=10e9+7;
const int INF=0x7fffffff;
const double ESP=10e-7;
const double Pi=acos(-1.0);
const int dr[]= {0,0,1,-1,1,1,-1,-1};
const int dc[]= {-1,1,0,0,-1,1,-1,1};
using namespace std;
const int MAXN=1005;
//bool vis[MAXN];
int a[MAXN],sg[MAXN];
void init()
{
    a[1] = 1,a[2] = 2;
    for(int i = 3; i < 20; i ++)
    {
        a[i] = a[i - 1] + a[i - 2];
        // cout<<a[i]<<endl;
    }
}

int b[MAXN];

void SG()
{

    memset(sg,0,sizeof(sg));
    for(int i = 1; i <= 1000; i ++)
    {
        memset(b,true,sizeof(b));
        for(int j = 1; j < 16; j ++)
        {
            if(i < a[j])
                break;

            b[sg[i - a[j]]] = false;//不是i - a[j]是sg[i-a[j]]
        }
        for(int j = 0; j <= 1000; j +&#
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值