dp经典模型

1.最长上升子序列

什么是最长上升子序列?就是从一排数据中,按顺序(不必连续)的选出最长的上升序列

用dp[i]表示以i为结尾的最长上升子序列。

状态方程dp[i] = max(dp[j] , 0) + 1

j满足小于i

例题1:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17613

题意:当另一个点的数值大于当前点时可以从一个点跳到另一个点,求最大的所有跳到的点的和

思路:dp[i]表示以i为结尾的最长上升子序列。初始化dp[i]为该数值本身。dp[i] = max(dp[j] + a[i],dp[i])

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int a[1005];
int dp[1005];
int main()
{
    //freopen("in.txt","r",stdin);
    int n;
    while(1){
    scanf("%d",&n);
    if(n == 0)
        break;
    for(int i = 0; i < n; i ++)
    {
        scanf("%d",& a[i]);
    }
    for(int i = 0; i < n; i ++)
    {
        dp[i] = a[i];
        for(int j = 0; j < i; j ++)
        {
            if(a[i] > a[j])
            {
                dp[i] = max(dp[j] + a[i],dp[i]);
            }
        }
    }
    int maxn = 0;
    for(int i = 0; i < n; i ++)
    {
        maxn = max(dp[i],maxn);
    }
    printf("%d\n",maxn);
    }
    return 0;
}
2.最长公共子序列

i,j分别为指向两个字符串的指针。当a[i] == a[j]时,dp[i][j] = dp[i - 1][j - 1] + 1

                                                        当a[i] != a[j]时,dp[i][j] = max(dp[i - 1][j],dp[i][j - 1])

注意对边界值的处理

例题二:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=22149

题意:有多组,每组两个字符串,问最长公共子序列是多长

思路:简单套用

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
string s1,s2;
int dp[1005][1005];
int main()
{
    //freopen("in.txt","r",stdin);
    while(cin>>s1>>s2)
    {
        memset(dp,0,sizeof(dp));
        int n = s1.size();
        int m = s2.size();
        for(int i = 0; i < n; i ++)
        {
            for(int j = 0; j < m; j ++)
            {
                if(s1[i] == s2[j])
                {
                    if(i < 1 || j < 1)
                        dp[i][j] = 1;
                    else
                    dp[i][j] = dp[i - 1][j -1] + 1;
                }
                else
                {
                    if(i < 1 && j < 1)
                        dp[i][j] = 0;
                    else if(i < 1 )
                        dp[i][j] = dp[i][j - 1];
                    else if(j < 1)
                        dp[i][j] = dp[i - 1][j];
                    else
                    dp[i][j] = max(dp[i -1][j],dp[i][j - 1]);
                }
            }
        }
        printf("%d\n",dp[n - 1][m - 1]);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值