基于Redis的布隆过滤器的实现

项目简介

包含一个基于Redis的布隆过滤器的实现,以及应用到Scrapy中的Demo。

地址:BloomFilterRedis


布隆过滤器

网上有很多介绍,推荐《数学之美》,介绍的很详尽,此处不再赘述。


哈希函数

布隆过滤器中需要n个哈希函数,我使用的是Arash Partow提供的常见哈希函数


建立在Redis上的布隆过滤器

Redis中有一个数据结构叫做Bitmap(下方有官网详解),它提供一个最大长度为512MB(2^32)的位数组。我们可以把它提供给布隆过滤器做位数组。

根据《数学之美》中给出的数据,在使用8个哈希函数的情况下,512MB大小的位数组在误报率万分之五的情况下可以对约两亿的url去重。而若单纯的使用set()去重的话,以一个url64个字节记,两亿url约需要128GB的内存空间,不敢想象。

我使用的策略是使用哈希函数算出的哈希值对2^32取模,填入bitmap中。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孔天逸

没有钱用,只能写写博客这样子~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值