信息流,搜索广告优化方法论

目录

统计学的方法论

估计

区间估计

总体比例的置信区间

总体均值的置信区间

假设检验

两个总体比例之差的显著性检验

总体均值之差的显著性检验

变量间关系

SEM优化

信息流优化


估计
区间估计

转化率5.6%、6.1%,都需要加上一个抽样误差,即数据波动的范围,假设这个抽样误差都是0.2%,那优化前的转化率区间为[5.4%,5.8%],优化后的转化率区间为[5.9%,6.3%]。简单来看,优化后的最低水平5.9%仍高于优化前的最高水平,因此可以得出这次优化是成功的结论。

总体比例的置信区间

主要适用于用户转化漏斗各环节的转化率估计,比如点击率、点击下载率、下载安装率、安装激活率等。从统计学角度来看,总体比例的置信区间是:从一个大的总体中抽取一个由n个观测值组成的随机样本,点估计的结果是p。那么我们可以得到总体百分比的一个95%置信区间。该区间为:

 

1.96这个值来自正态分布,2.3.2曾提到,有95%的z值落在-1.96到1.96之间,从而构成了一个95%的置信区间。还是之前的例子,某条信息流广告创意有36432的曝光,1128的点击。带入总体比例的置信区间的计算公式,p=1128/36432=3.10%,n=36432。抽样误差为:

 

于是可以得到,这条信息流广告创意的点击率95%的置信区间为(3.10%-0.178%,3.10%+0.178%),即2.92%~3.28%。

总体均值的置信区间

通过样本数据计算的样本均值,估计总体的对应均值数的取值范围。

主要使用于估计流量的大小,比如点击量、下载量、注册量等

假设检验
两个总体比例之差的显著性检验

从统计学的角度来说,这个问题属于两个总体比例之差的显著性检验。同样的,后面还可能涉及两个总体均值之差的显著性检验。这两个显著性检验也就构成了互联网业内适用面最广的A/B测试的理论基础。

 

代入1.2.1例子的具体数值,得出:p1=6.4%,n1=10000;p2=5.6%,n2=10000;计算得z=2.38,或者把p1和p2换个位置,就得到z=-2.38。此时的z值是大于1.96和小于-1.96的,属于那剩下的5%的情况。所以可以做出判断,原假设是错误的,相反的假设是正确的,即“试验版本_1和原始版本的转化率是有显著差异的”,换句话说,A/B测试是成功的。

总体均值之差的显著性检验

 

x1:样本1的均值;x1:样本2的均值;S1:样本1的标准差;S2:样本2的标准差;n1:样本1的样本量;n2:样本2的样本量。区别于两个总体比例之差的显著性检验,两个总体均值之差的显著性检验的适用范围相对窄很多,包括展现量、点击量、注册量、线索量等流量的数据指标。

显著性检验验证地址 A/B Test Statistical Significance Calculator | VWO Free Tools

变量间关系
  • 自变量和因变量
  • 相关分析
  • 回归分析:回归分析的核心价值在于“预测”,即通过对历史数据的分析,构建可以预测未来因变量值的数学公式。
SEM优化

对于SEM广告数据分析,CPC一直都是重要的参考指标。我们应重点关注:CPC和出价、广告排名、点击率之间的关系。  

1.根据SEM广告竞价排名原理可知,CPC和出价之间的差距较小,比如CPC略低,在10%以内,说明后一名广告位与我们的差距较小,同理,若CPC和出价之间的差距较大,说明我们的广告竞争力领先后一名较多。

2.广告排名如果相对靠前,关键词提价的空间相对较小;反之,广告排名相对靠后,可以通过提价获取更靠前的位置。

3.在广告排名相对不变的情况下,CPC与点击率具有一定的负相关关系,如果想放量,但提价空间不大,不妨从优化点击率着手

 

“设计招聘”一词的转化成本高了约20%,CPC为3.62元,确实高了一点,CPC和出价差距非常小,说明排在后一名的竞争对手跟得很紧,从平均排名1.67来看,降低出价可能会使排名接近第2名。还差一个点击率没有看,对比来看,0.86%的点击率偏低,所以需要较高的出价来争夺靠前的排名。优化策略应为对创意进行A/B测试,提高其点击率,高级样式也可以考虑使用,待点击率提高之后,出价可适当下调10%~15%,最终达到目标成本。

“银行招聘”一词成本较高,CPC为1.11元,和出价1.35元的差距较大,说明领先排后一名的竞争对手较多。但从平均排名来看,大多数情况下是第3名,还算不错。点击率已经不低了,优化策略只能从出价着手。优化策略应保持点击率稳定,分多次下调出价,比如一次下调5%,密切关注CPC和平均排名的变化。

“前端招聘”一词成本偏低,优化方向主要是能否放量。CPC为2.65,和出价的2.80元的差距较小,有提价的空间,点击率2.03%算是比较高的。平均排名1.12,说明流量已经接近饱和了,调价的价值不大。优化策略应为在保证点击率稳定的基础上,提高转化率,包括各类高级样式等。

一是CTR的高低与最终转化效果没有直接相关关系。因此优化CTR的目标并非越高越好。但同时,CTR的水平不应过低,业内普遍经验是以1%作为分界线,低于1%的CTR说明广告相关性、创意质量确实有待提高,进而对关键词的质量度得分造成影响。

决定关键词质量度得分的主要有以下几个方面,相关优化也可以有针对性地进行。

·预估点击率。主要涉及广告标题和创意的撰写方面。

·业务相关性。包括关键词与创意的相关性、关键词与着陆页内容的相关性等。

·着陆页体验。应避免图片的大量堆砌,保证网页内容清晰、充实、易于浏览。关键词质量度得分是一个需要长期关注的指标,对于CPC调控起着重要的参考价值。

对广告词的优化与分析:cpc,出价,排名(与质量度和出价有关系),点击率

搜索类优化步骤:对于有转化关键词归类分析,按照cpc,出价,排名,点击率等指标进行优化;无转化关键词搭建账户评分体系,展现量高的,优化创意;平均排名>3的,优化排名;展现量小的,积累数据在分析;

信息流优化

信息流广告数据分析常见指标:

  • ecpm :ECPM=CPC出价*预估CTR
    • cpc结算公式

 

  • ctr:

优化实际CTR提升广告ROI的逻辑

 

回归到广告投放的本质,基于对用户画像、用户需求和场景的深刻洞察上,以更精准的广告定向,提高营销着陆页的转化率,带动ROI的提升

信息流广告测试主要涉及两个指标,一是点击率ctr,二是转化率cvr

定向优化:AB test,朴素贝叶斯,创意定量化

P(AB)=P(A)*P(A|B)=P(B)*P(B|A)

创意优化:定量化

F(β1,β2,β3,…,βn)β1为创意,β2广告定向,β3为着陆页,β4为CPC出价,β5为账户预算等。在保证β2到βn不变的条件下,分析β1与用户转化概率F的关系

信息流广告的优化思路

第一步,优化账户结构。将目前的10个推广计划缩减为2个。推广单元按照广告定向划分,并设计用于新创意测试的广告单元。

第二步,梳理目前投放创意的转化数据,挑选比较有代表性的创意,作为测试广告定向的创意。第三步,通过推广单元的广告定向设置,设计多组对广告定向的测试。待样本数据积累到一定程度,通过显著性检验,得出转化效果较优的广告定向组合。

第四步,以上一步确定的广告定向,批量进行广告创意测试,密切关注数据,通过显著性检验,保留转化效果较好的创意。

第五步,根据受众画像数据,基于朴素贝叶斯算法,进一步优化广告定向。

第六步,待创意的样本数据积累到一定程度,尝试通过创意画像数学建模,寻找优质创意的设计方向。

先确定定向,在确定创意,通过创意画像再进一步优化创意。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值