AcWing 878 线性同余方程

题目描述:

给定n组数据ai,bi,mi,对于每组数求出一个xi,使其满足ai∗xi≡bi(mod mi),如果无解则输出impossible。

输入格式

第一行包含整数n。接下来n行,每行包含一组数据ai,bi,mi。

输出格式

输出共n行,每组数据输出一个整数表示一个满足条件的xi,如果无解则输出impossible。

每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。

输出答案必须在int范围之内。

数据范围

1≤n≤10^5,1≤ai,bi,mi≤2∗10^9

输入样例:

2
2 3 6
4 3 5

输出样例:

impossible
7

分析:

a∗x≡b(mod m)等价于ax - my' = b,令y = -y',得到ax + my = b,便可以使用扩展欧几里得算法进行求解了。当gcd(a,m) | b时,该线性同余方程有解,否则无解。我们只需先求解ax + my = gcd(a,m)的解,然后对系数x和y扩大b / gcd(a,m)倍即可得到方程ax + my = b的解了。

更一般的,ax+by =c的特解为x0,y0,d=gcd(a,b),则方程的通解为x = x0 + kb/d,y = y0 - ka/d。k为任意整数,这是因为想要在x中加上的参数乘上a后与另一项参数乘以b后抵消,即a(x+z1)+b(y-z2)=c,可以得到az1=bz2,z1,z2都为整数,且通解要尽可能涵盖更多的数,故z1,z2应该尽可能的小,最小整数解就是z1=b/d,z2=a/d。

#include <iostream>
typedef long long ll;
using namespace std;
int exgcd(int a,int b,int &x,int &y){
    if(!b){
        x = 1,y = 0;
        return a;
    }
    int d = exgcd(b,a % b,y,x);
    y -= a / b * x;
    return d;
}
int main(){
    int n,a,b,m,x,y,d;
    scanf("%d",&n);
    while(n--){
        scanf("%d%d%d",&a,&b,&m);
        d = exgcd(a,m,x,y);
        if(b % d)   puts("impossible");
        else printf("%d\n",(ll)x * b / d % m);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值