题目描述:
高二数学《绿色通道》总共有 n 道题目要抄,编号 1,2,…,n,抄第 i 题要花 ai 分钟。
小 Y 决定只用不超过 t 分钟抄这个,因此必然有空着的题。
每道题要么不写,要么抄完,不能写一半。
下标连续的一些空题称为一个空题段,它的长度就是所包含的题目数。
这样应付自然会引起马老师的愤怒,最长的空题段越长,马老师越生气。
现在,小 Y 想知道他在这 t 分钟内写哪些题,才能够尽量减轻马老师的怒火。
由于小 Y 很聪明,你只要告诉他最长的空题段至少有多长就可以了,不需输出方案。
输入格式
第一行为两个整数 n,t。
第二行为 n 个整数,依次为 a1,a2,…,an。
输出格式
输出一个整数,表示最长的空题段至少有多长。
数据范围
0<n≤5×10^4,
0<ai≤3000,
0<t≤10^8
输入样例:
17 11
6 4 5 2 5 3 4 5 2 3 4 5 2 3 6 3 5
输出样例:
3
分析:
本题的难点在于解题的方向,如果看到题目把时间限制t当做背包容量,然后考虑每道题选与不选来求最长空题段最短是多少,状态机需要涉及选与不选,已经消耗的时间,目前最长的空题段,较为复杂。但是换个思路想想,最长空题段的长度可能是1到n,只要在最长空题段不超过某个长度len的前提下消耗的最少时间不超过t,那么这个len就是合法的,可以用二分法来枚举可能的解,从这个方向考虑问题就会简单很多,因为求空题段长度不超过len的最小消耗时间与上一题AcWing 1089 烽火传递基本一致。
问题就被划分为了两部分,二分找最优解,以及单调队列优化的去求解最小时间。对于二分,mid = l + r >> 1.因此为了不出现死循环,当mid不满足条件时l = mid + 1即可。对于DP部分,由于与上一题基本一致,就不再赘述,需要注意的是上一题是连续m个烽火台至少有一个要发出信号,而本题是空的题目不超过m,二者是不同的。比如m = 3时,1 2 3 4 5 6,假如第6题不空,则上一题不空的位置最少可以是2,也就说i - q[hh] = m + 1时都是合法的,所以i - q[hh] > m + 1时才能出队头,另外,最后枚举最后一道不空题的位置时,需要从n - m的位置枚举起而不是n - m + 1,这就是本题与上一题的区别。
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 50005;
int f[N],w[N],q[N],n,t;
bool check(int m){
int hh = 0,tt = 0;
for(int i = 1;i <= n;i++){
if(i - q[hh] > m + 1) hh++;
f[i] = f[q[hh]] + w[i];
while(hh <= tt && f[q[tt]] >= f[i]) tt--;
q[++tt] = i;
}
int res = 1e9;
for(int i = n - m;i <= n;i++) res = min(res,f[i]);
if(res <= t) return true;
else return false;
}
int main(){
scanf("%d%d",&n,&t);
for(int i = 1;i <= n;i++) scanf("%d",&w[i]);
int l = 1,r = n;
while(l < r){
int mid = l + r >> 1;
if(check(mid)) r = mid;
else l = mid + 1;
}
printf("%d\n",l);
return 0;
}