AcWing 1135 新年好

题目描述:

重庆城里有 n 个车站,m 条 双向 公路连接其中的某些车站。

每两个车站最多用一条公路连接,从任何一个车站出发都可以经过一条或者多条公路到达其他车站,但不同的路径需要花费的时间可能不同。

在一条路径上花费的时间等于路径上所有公路需要的时间之和。

佳佳的家在车站 1,他有五个亲戚,分别住在车站 a,b,c,d,e。

过年了,他需要从自己的家出发,拜访每个亲戚(顺序任意),给他们送去节日的祝福。

怎样走,才需要最少的时间?

输入格式

第一行:包含两个整数 n,m,分别表示车站数目和公路数目。

第二行:包含五个整数 a,b,c,d,e,分别表示五个亲戚所在车站编号。

以下 m 行,每行三个整数 x,y,t,表示公路连接的两个车站编号和时间。

输出格式

输出仅一行,包含一个整数 T,表示最少的总时间。

数据范围

1≤n≤50000,
1≤m≤10^5,
1<a,b,c,d,e≤n,
1≤x,y≤n,
1≤t≤100

输入样例:

6 6
2 3 4 5 6
1 2 8
2 3 3
3 4 4
4 5 5
5 6 2
1 6 7

输出样例:

21

分析:

本题考查dijkstra+dfs,虽然总体思路不难,但是求解出来还是不容易的。首先分析下题意,从车站1出发,求拜访完5个亲戚所花的最小时间。对五个亲戚所在地abcde的访问肯定是由先后顺序的,暴力的办法就是枚举下访问五个亲戚的顺序,比如按照abcde的顺序访问,只需要求1到a,a到b,b到c,c到d,d到e这五个最短路是多少,一共需要计算5 * 5! = 600次最短路径,使用堆优化版dijkstra算法的时间复杂度是O(mlogn),m * logn 约等于10^5 * 200 = 2 * 10^7,执行600次dijkstra显然会超时。

分析下暴力做法(先dfs,再dijkstra)的冗余计算,比如按照abcde顺序访问时计算量ab的最短距离,而按照cabde顺序访问时又会计算a到b的最短距离,显然这是没必要的,不妨先计算下这些目标点之间的最短距离,打表备查,然后再dfs枚举顺序,也就是先dijkstra再dfs。这里y总是求了1abcde这六点到所有点的最小距离,其实是没有必要的,只需要求abcde到所有点的最小距离,对于起点1,下一站要到达的必然是abcde中的一点,因此,只需要利用abcde到1的距离就知道了1到abcde的距离了,这样就只需要做5次dijkstra,最多要计算5 * 2 * 10^7 = 10^8次,正常情况下不会超时的。(这题使用spfa应该是会被卡的,所以还是使用dijkstra稳妥些)。

dijkstra直接套模板即可,设source[6]分别表示1abcde这六个点的实际编号,然后用d[i][j]表示从source中第i点到j的最短距离,在五次dijkstra中求出d[i][j]即可,需要注意的是,这里的j表示的是节点的编号,但i仅仅是在source数组中的下标,换而言之,d[i][j]表示的是编号为source[i]到编号为j点的最短距离,理解这点很重要,因为后面的dfs需要格外注重这个细节。

int dfs(int u,int cur,int res)返回已经到达cur点后,走完剩余所有点所有方案中的最小总耗时总耗时。可能这个定义不太简洁,但是这是因为dfs返回的就是我们所求的最优解了。u表示当前已经访问了几个目标车站,cur表示当前访问的车站在source数组中的下标,res表示走到编号为source[cur]车站的总耗时。dfs的递归基自然是u > 5的情况了。此时已访问6个车站,直接返回累计耗时res即可。一般情况下,需要从source数组中下标为1到5的点中选出一个还未被访问的访问,并且此时的最优解等于访问剩余点所有方案的最小时间,也就是ans = min(dfs(u+1,i,res + w),这里的w是从cur走到i的代价,还记得前面说到d[i][j]中i是source数组的下标,j是节点的编号,因此此时的w = d[cur][source[i]],同时要注意别把u和cur弄混,u是已访问的车站数(初始在1车站,因此u的初始值是1),而cur是当前所在车站在source中的下标。dfs的过程为:

int dfs(int u,int cur,int res){
    if(u > 5)   return res;
    int ans = 1e9;
    for(int i = 1;i <= 5;i++){
        if(!st[i]){
            st[i] = true;
            ans = min(ans,dfs(u + 1,i,res + d[cur][source[i]]));
            st[i] = false;
        }
    }
    return ans;
}

主要流程是经典的选与不选的决策,选第i个车站,直接将访问数组st置为true即可,不访问的话恢复一下st数组表示未选择当前车站。虽然dfs过程很简洁,但是对下标的考虑以及dfs过程中求最小时间的操作都是需要相当谨慎的。本题总的代码如下: 

#include <iostream>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;
typedef pair<int,int> PII;
const int N = 50005,M = 200005;
int n,m,source[6],d[6][N];
int idx,h[N],e[M],ne[M],w[M];
priority_queue<PII> pq;
bool st[N];
void add(int a,int b,int c){
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
void dijkstra(int s,int *d){
    memset(st,false,sizeof st);
    d[s] = 0;
    pq.push({-d[s],s});
    while(pq.size()){
        int u = pq.top().second;
        pq.pop();
        if(st[u])   continue;
        st[u] = true;
        for(int i = h[u];~i;i = ne[i]){
            int j = e[i];
            if(!st[j] && d[j] > d[u] + w[i]){
                d[j] = d[u] + w[i];
                pq.push({-d[j],j});
            }
        }
    }
}
int dfs(int u,int cur,int res){
    if(u > 5)   return res;
    int ans = 1e9;
    for(int i = 1;i <= 5;i++){
        if(!st[i]){
            st[i] = true;
            ans = min(ans,dfs(u + 1,i,res + d[cur][source[i]]));
            st[i] = false;
        }
    }
    return ans;
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i = 1;i <= 5;i++)    scanf("%d",&source[i]);
    source[0] = 1;
    int a,b,c;
    memset(h,-1,sizeof h);
    for(int i = 0;i < m;i++){
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c),add(b,a,c);
    }
    memset(d,0x3f,sizeof d);
    for(int i = 1;i <= 5;i++){
        dijkstra(source[i],d[i]);
        d[0][source[i]] = d[i][1];
    }
    memset(st,false,sizeof st);//对st的复用
    printf("%d\n",dfs(1,0,0));
    return 0;
}

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值