最短路问题(初步实现)


在这里插入图片描述

一个一个来;

朴素Dijkstra O(n^2)

主要用在稠密图(用邻接矩阵来存)

思路:
1.先初始化距离 dist[1] =0 ;dist[i] = 0x3f3f3f3f;定义一个集合S 来存已经确定最短距离的点;
2.for(int i=1;i<=n;i++)
		t 是不在S中,距离最短的点;
		把t存入S
		再用t来更新其他点的距离;

例题链接:https://www.acwing.com/problem/content/851/

代码实现:

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510;

int n, m;
int g[N][N];//邻接矩阵
int dist[N];
bool st[N];
//核心
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    //所以时间复杂度为n^2;很像贪心
    for (int i = 0; i < n ; i ++ )
    {
        //t标记的是位置
        int t = -1;
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))//后来的值小于前面的;
                t = j;
        //t点之前的管不了,但t后面的更新
        for (int j = 1; j <= n; j ++ )
            dist[j] = min(dist[j], dist[t] + g[t][j]);

        st[t] = true;
    }
     // 如果起点到达不了n号节点返回-1
    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

int main()
{
    scanf("%d%d", &n, &m);

    memset(g, 0x3f, sizeof g);
    while (m -- )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);

        g[a][b] = min(g[a][b], c);//解决重边和自环
    }

    printf("%d\n", dijkstra());

    return 0;
}

dijkstra堆优化版 O(mlogn)

适合稀疏图(用邻接表)

思路
堆优化版的dijkstra是对朴素版dijkstra进行了优化,在朴素版dijkstra中时间复杂度最高的寻找距离最短的点O(n^2)可以使用最小堆优化。
1. 一号点的距离初始化为零,其他点初始化成无穷大。
2. 将一号点放入堆中。
3. 不断循环,直到堆空。每一次循环中执行的操作为:
    弹出堆顶(与朴素版diijkstra找到S外距离最短的点相同,并标记该点的最短路径已经确定)。
    用该点更新临界点的距离,若更新成功就加入到堆中。

感谢optimjie的注释,帮助理解
感谢小呆呆的图,帮助理解
在这里插入图片描述
在这里插入图片描述

#include<iostream>
#include<cstring>
#include<queue>

using namespace std;

typedef pair<int, int> PII;

const int N = 100010; // 把N改为150010就能ac

// 稀疏图用邻接表来存
int h[N], e[N], ne[N], idx;
int w[N]; // 用来存权重
int dist[N];
bool st[N]; // 如果为true说明这个点的最短路径已经确定

int n, m;

void add(int x, int y, int c)
{
    w[idx] = c; // 有重边也不要紧,假设1->2有权重为2和3的边,再遍历到点1的时候2号点的距离会更新两次放入堆中
    e[idx] = y; // 这样堆中会有很多冗余的点,但是在弹出的时候还是会弹出最小值2+x(x为之前确定的最短路径),并
    ne[idx] = h[x]; // 标记st为true,所以下一次弹出3+x会continue不会向下执行。
    h[x] = idx++;
}

int dijkstra()
{
    memset(dist, 0x3f, sizeof(dist));
   // dist[0] = 1;
    priority_queue<PII, vector<PII>, greater<PII>> heap; // 定义一个小根堆
    // 这里heap中为什么要存pair呢,来首先小根堆是根据距离排的,所以有一个变量要是距离,其次在从堆中拿出来的时    
    // 候要知道知道这个点是哪个点,不然怎么更新邻接点呢?所以第二个变量要存点。
    heap.push({ 0, 1 }); // 这个顺序不能倒,pair排序时是先根据first,再根据second,这里显然要根据距离排序
    while(heap.size())
    {
        PII k = heap.top(); // 取不在集合S中距离最短的点
        heap.pop();
        int ver = k.second, distance = k.first;

        if(st[ver]) continue;
        st[ver] = true;

        for(int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i]; // i只是个下标,e中在存的是i这个下标对应的点。
            if(dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({ dist[j], j });
            }
        }
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    else return dist[n];
}

int main()
{
    memset(h, -1, sizeof(h));
    scanf("%d%d", &n, &m);

    while (m--)
    {
        int x, y, c;
        scanf("%d%d%d", &x, &y, &c);
        add(x, y, c);
    }

    cout << dijkstra() << endl;

    return 0;
}

Floyd求最短路

思路
Floyd 属于多源最短路径算法,能够求出任意2个顶点之间的最短路径,支持负权边
1.时间复杂度:O(n3),效率比执行 n次 Dijkstra 算法要好( n是顶点数量)

算法原理
从任意顶点 i 到任意顶点 j 的最短路径不外乎两种可能
① 直接从 i 到 j
② 从 i 经过若干个顶点到 j
假设 dist(i,j) 为顶点 i 到顶点 j 的最短路径的距离
对于每一个顶点 k,检查 dist(i,k) + dist(k,j)<dist(i,j) 是否成立
如果成立,证明从 i 到 k 再到 j 的路径比 i 直接到 j 的路径短,设置 dist(i,j) = dist(i,k) + dist(k,j)
当我们遍历完所有结点 k,dist(i,j) 中记录的便是 i 到 j 的最短路径的距离
作者:空_22

就是非常的像dp

void floyd(){
    for(int k = 1; k <= n; k ++){
        for(int i = 1; i <= n; i ++){
            for(int j = 1; j <= n; j ++){
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
            }
        }
    }
}

先写这些

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最短路问题是指在一个加权有向图中找到从起点到终点的最短路径,其中边权表示路径长度。常见的解决算法有Dijkstra算法和Bellman-Ford算法。下面给出Python实现代码。 首先,我们需要定义一个表示图的类Graph,它包含节点数、边数和邻接表等属性和方法。在邻接表中,每个节点的所有邻居节点及对应的边权值都被存储在一个列表中。 ```python class Graph: def __init__(self, num_vertices): self.num_vertices = num_vertices self.adjacency_list = [[] for _ in range(num_vertices)] def add_edge(self, src, dest, weight): self.adjacency_list[src].append((dest, weight)) ``` 接下来,我们实现Dijkstra算法。该算法维护一个set集合S和一个优先队列Q,其中S包含已经确定最短路径的节点,而Q中包含待处理的节点。首先,将起点加入S中,并将所有邻居节点加入Q中。然后,对于Q中的每个节点,计算它到起点的距离是否更短,如果更短,则更新距离并加入S中。最后,当Q为空时,算法结束,S中包含了所有最短路径经过的节点及它们到起点的距离。 ```python import heapq def dijkstra(graph, start): distances = [float('inf')] * graph.num_vertices distances[start] = 0 pq = [(0, start)] while len(pq) > 0: curr_distance, curr_vertex = heapq.heappop(pq) if curr_distance > distances[curr_vertex]: continue for neighbor, weight in graph.adjacency_list[curr_vertex]: distance = curr_distance + weight if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(pq, (distance, neighbor)) return distances ``` 最后,我们可以使用上述代码来解决最短路问题。例如,下面的代码创建了一个有向图,然后使用Dijkstra算法找到从起点0到终点4的最短路径。 ```python graph = Graph(5) graph.add_edge(0, 1, 10) graph.add_edge(0, 3, 5) graph.add_edge(1, 2, 1) graph.add_edge(1, 3, 2) graph.add_edge(2, 4, 4) graph.add_edge(3, 1, 3) graph.add_edge(3, 2, 9) graph.add_edge(3, 4, 2) distances = dijkstra(graph, 0) print(distances[4]) # 输出最短路径长度 ``` 输出结果为11,表示从起点0到终点4的最短路径长度为11。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值