一、原理
1. RANSAC原理
参考文章:RANSAC算法详解(附Python拟合直线模型代码)
RANSAC(RAndom SAmple Consensus, 随机采样一致)算法是从一组有外点(Outliers) 的数据中正确估计数学模型参数的迭代算法。"外点"一般指的是数据中的噪声,比如匹配中的无匹配和估计曲线中的离群点。
1.1 算法流程
- 选择处可以估计处模型的最小数据集,对于直线拟合来说就是两个点,对于二次曲线拟合就是三个点。
- 使用这个数据集来计算出数据模型
- 将所有数据带入这个模型,计算出“内点”的数量;累计误差在一定范围内的数据子集
- 比较当前模型和之前推出的最好的模型的“内点”数量,记录最大"内点"数的模型参数和“内点”数。
- 重复 1 - 4 步,知道迭代结束或者当前模型已经足够好了(“内点数量大于一定数量”)
1.2 迭代次数推导
假设"内点"在数据中的占比为
t
t
t 则:
t
=
n
inliners
n
inliners
+
n
outliers
(1.1)
t = \frac{n_{\text{inliners}}}{ n_{\text{inliners}}+n_{\text{outliers}}} \tag{1.1}
t=ninliners+noutliersninliners(1.1)
每次计算模型使用
N
N
N个点的情况下,选取的点至少有一个外点的情况为:
1
−
t
N
1- t^N
1−tN
迭代
k
k
k次的情况下,能采样到正确的
N
N
N个点去计算出正确模型的概率为:
P
=
1
−
(
1
−
t
N
)
k
(1.3)
P = 1-(1-t^N)^k \tag{1.3}
P=1−(1−tN)k(1.3)
P 是我们期望迭代能够得到正确结果的概率是一个超参数。所以我们可以得到需要迭代的次数为:
k
=
log
(
1
−
P
)
log
(
1
−
t
N
)
(1.4)
k = \frac{\log(1-P)}{\log(1-t^N)} \tag{1.4}
k=log(1−tN)log(1−P)(1.4)
1.3 C# Halcon实现
/// <summary>
/// RASAC算法拟合二次曲线 y = A*X*X + B*X + C
/// </summary>
/// <param name="X"></param>
/// <param name="Y"></param>
/// <param name="best_weight">返回最优的一组参数</param>
/// <param name="max_distance">inner点最大距离</param>
/// <param name="max_iter">最大迭代数</param>
private void FitCuveByRASAC(HTuple X, HTuple Y, out HTuple best_weight, double max_distance, int max_iter = 1000)
{
best_weight = new HTuple ();
HTuple MatrixA, MatrixACol0, MatrixACol1;
double best_inner_count = 0;
best_weight.Append(0.0);
best_weight.Append(0.0);
best_weight.Append(0.0);
best_weight.Append(0.0);
for (int i = 0; i < max_iter; i++)
{
HsubX = new HTuple (), subY = new HTuple ();
HOperatorSet.HTupleRand(3, out HTuple selectIdx);
selectIdx = selectIdx * X.Length;
int sIdx1 = (int)(selectIdx[0].D);
int sIdx2 = (int)(selectIdx[1].D);
int sIdx3 = (int)(selectIdx[2].D);
if (sIdx1 == sIdx2 || sIdx1 == sIdx3 || sIdx3 == sIdx2) continue;
subX = subX.HTuple Concat(X.HTuple Select(sIdx1));
subX = subX.HTuple Concat(X.HTuple Select(sIdx2));
subX = subX.HTuple Concat(X.HTuple Select(sIdx3));
subY = subY.HTuple Concat(Y.HTuple Select(sIdx1));
subY = subY.HTuple Concat(Y.HTuple Select(sIdx2));
subY = subY.HTuple Concat(Y.HTuple Select(sIdx3));
HOperatorSet.CreateMatrix(3, 3, 1.0, out MatrixA);
HOperatorSet.CreateMatrix(3, 1, subX * subX, out MatrixACol1);
HOperatorSet.CreateMatrix(3, 1, subX, out MatrixACol0);
HOperatorSet.SetSubMatrix(MatrixA, MatrixACol1, 0, 0);
HOperatorSet.SetSubMatrix(MatrixA, MatrixACol0, 0, 1);
HOperatorSet.CreateMatrix(3, 1, subY, out HTupleMatrixB);
HOperatorSet.SolveMatrix(MatrixA, "general", 0, MatrixB, out HTupleMatrixX);
HOperatorSet.GetValueMatrix(MatrixX, 0, 0, out HTuple A);
HOperatorSet.GetValueMatrix(MatrixX, 1, 0, out HTuple B);
HOperatorSet.GetValueMatrix(MatrixX, 2, 0, out HTuple C);
HTupleY_hat = (A * X * X) + (B * X) + C;
HTuple absDist = (Y - Y_hat).HTuple Abs();
HTuple counts = absDist.HTuple LessEqualElem(max_distance);
HOperatorSet.HTuple Sum(counts, out HTuple innerNums);
if(innerNums > best_inner_count)
{
best_inner_count = innerNums;
best_weight[0] = A;
best_weight[1] = B;
best_weight[2] = C;
}
} // end for
best_weight[3] = best_inner_count / X.Length;
} // end FitCuveByRASAC
1.4 小结
- RANSAC算法是从有包含一定噪声数据中拟合函数。
- 随机冲数据中抽取N个点,计算得到模型。讲所有数据带入这个模型,计算满足次模型的点的数量。
- 选择能够最大程度满足数据中的点的模型。