【图像处理】RANSAC二次曲线拟合

RANSAC算法是一种处理包含噪声数据的模型拟合方法,主要通过迭代选择数据子集来估计模型参数。文章详细介绍了算法流程,包括选择最小数据集计算模型、迭代次数的推导,并给出了C#Halcon实现二次曲线拟合的代码示例。
摘要由CSDN通过智能技术生成

一、原理

1. RANSAC原理

参考文章:RANSAC算法详解(附Python拟合直线模型代码)

RANSAC(RAndom SAmple Consensus, 随机采样一致)算法是从一组有外点(Outliers) 的数据中正确估计数学模型参数的迭代算法。"外点"一般指的是数据中的噪声,比如匹配中的无匹配和估计曲线中的离群点。

1.1 算法流程

  1. 选择处可以估计处模型的最小数据集,对于直线拟合来说就是两个点,对于二次曲线拟合就是三个点。
  2. 使用这个数据集来计算出数据模型
  3. 将所有数据带入这个模型,计算出“内点”的数量;累计误差在一定范围内的数据子集
  4. 比较当前模型和之前推出的最好的模型的“内点”数量,记录最大"内点"数的模型参数和“内点”数。
  5. 重复 1 - 4 步,知道迭代结束或者当前模型已经足够好了(“内点数量大于一定数量”)

1.2 迭代次数推导

假设"内点"在数据中的占比为 t t t 则:
t = n inliners n inliners + n outliers (1.1) t = \frac{n_{\text{inliners}}}{ n_{\text{inliners}}+n_{\text{outliers}}} \tag{1.1} t=ninliners+noutliersninliners(1.1)

每次计算模型使用 N N N个点的情况下,选取的点至少有一个外点的情况为:
1 − t N 1- t^N 1tN
迭代 k k k次的情况下,能采样到正确的 N N N个点去计算出正确模型的概率为:
P = 1 − ( 1 − t N ) k (1.3) P = 1-(1-t^N)^k \tag{1.3} P=1(1tN)k(1.3)
P 是我们期望迭代能够得到正确结果的概率是一个超参数。所以我们可以得到需要迭代的次数为:
k = log ⁡ ( 1 − P ) log ⁡ ( 1 − t N ) (1.4) k = \frac{\log(1-P)}{\log(1-t^N)} \tag{1.4} k=log(1tN)log(1P)(1.4)

1.3 C# Halcon实现

 /// <summary>
/// RASAC算法拟合二次曲线 y = A*X*X + B*X + C
/// </summary>
/// <param name="X"></param>
/// <param name="Y"></param>
/// <param name="best_weight">返回最优的一组参数</param>
/// <param name="max_distance">inner点最大距离</param>
/// <param name="max_iter">最大迭代数</param>
private void FitCuveByRASAC(HTuple X, HTuple Y, out HTuple best_weight, double max_distance, int max_iter = 1000)
{
    best_weight = new HTuple ();
    
    HTuple MatrixA, MatrixACol0, MatrixACol1;
    double best_inner_count = 0;
    best_weight.Append(0.0);
    best_weight.Append(0.0);
    best_weight.Append(0.0);
    best_weight.Append(0.0);
    for (int i = 0; i < max_iter; i++)
    {
        HsubX = new HTuple (), subY = new HTuple ();
        HOperatorSet.HTupleRand(3, out HTuple selectIdx);
        selectIdx = selectIdx * X.Length;
        int sIdx1 = (int)(selectIdx[0].D);
        int sIdx2 = (int)(selectIdx[1].D);
        int sIdx3 = (int)(selectIdx[2].D);

        if (sIdx1 == sIdx2 || sIdx1 == sIdx3 || sIdx3 == sIdx2) continue;
        subX = subX.HTuple Concat(X.HTuple Select(sIdx1));
        subX = subX.HTuple Concat(X.HTuple Select(sIdx2));
        subX = subX.HTuple Concat(X.HTuple Select(sIdx3));

        subY = subY.HTuple Concat(Y.HTuple Select(sIdx1));
        subY = subY.HTuple Concat(Y.HTuple Select(sIdx2));
        subY = subY.HTuple Concat(Y.HTuple Select(sIdx3));
        HOperatorSet.CreateMatrix(3, 3, 1.0, out MatrixA);
        HOperatorSet.CreateMatrix(3, 1, subX * subX, out MatrixACol1);
        HOperatorSet.CreateMatrix(3, 1, subX, out MatrixACol0);
        HOperatorSet.SetSubMatrix(MatrixA, MatrixACol1, 0, 0);
        HOperatorSet.SetSubMatrix(MatrixA, MatrixACol0, 0, 1);
        HOperatorSet.CreateMatrix(3, 1, subY, out HTupleMatrixB);
        HOperatorSet.SolveMatrix(MatrixA, "general", 0, MatrixB, out HTupleMatrixX);

        HOperatorSet.GetValueMatrix(MatrixX, 0, 0, out HTuple A);
        HOperatorSet.GetValueMatrix(MatrixX, 1, 0, out  HTuple B);
        HOperatorSet.GetValueMatrix(MatrixX, 2, 0, out HTuple C);
        HTupleY_hat = (A * X * X) + (B * X) + C;
        HTuple absDist = (Y - Y_hat).HTuple Abs();
        HTuple counts = absDist.HTuple LessEqualElem(max_distance);
        HOperatorSet.HTuple Sum(counts, out HTuple innerNums);
        if(innerNums > best_inner_count)
        {
            best_inner_count = innerNums;
            best_weight[0] = A;
            best_weight[1] = B;
            best_weight[2] = C;
        }
    } // end for
    best_weight[3] = best_inner_count / X.Length;
} // end FitCuveByRASAC

1.4 小结

  • RANSAC算法是从有包含一定噪声数据中拟合函数。
  • 随机冲数据中抽取N个点,计算得到模型。讲所有数据带入这个模型,计算满足次模型的点的数量。
  • 选择能够最大程度满足数据中的点的模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值