acm-(数论、莫比乌斯反演)SP20173 DIVCNT2 - Counting Divisors (square)

题面
传送门
本题是让求这样一个式子: ∑ i = 1 n d ( i 2 ) \mathbf{\sum_{i=1}^nd(i^2)} i=1nd(i2)
先看 d ( n 2 ) \mathbf{d(n^2)} d(n2)如何化解,根据基础数论学习笔记(下)第十部分6.13和14我们可以知道 d ( n 2 ) = ∑ d ′ ∣ n ∑ k ∣ d ′ ∣ μ ( k ) ∣ \mathbf{d(n^2)=\sum_{d'\mid n}\sum_{k\mid d'}|\mu(k)|} d(n2)=dnkdμ(k)。方便起见假设 f ( n ) = ∣ μ ( n ) ∣ \mathbf{f(n)=|\mu(n)|} f(n)=μ(n),于是有 d ( n 2 ) = ( ( f ∗ I ) ∗ I ) ( n ) = ( f ∗ ( I ∗ I ) ) ( n ) = ( f ∗ d ) ( n ) = ∑ d ′ ∣ n f ( d ′ ) d ( n d ′ ) \mathbf{d(n^2)=((f*I)*I)(n)=(f*(I*I))(n)=(f*d)(n)=\sum_{d'\mid n}f(d')d(\frac n{d'})} d(n2)=((fI)I)(n)=(f(II))(n)=(fd)(n)=dnf(d)d(dn)
代入原式我们可以得到:
∑ i = 1 n d ( i 2 ) = ∑ i = 1 n ∑ d ′ ∣ i f ( d ′ ) d ( i d ′ ) = ∑ d ′ = 1 n f ( d ′ ) ∑ i = 1 ⌊ n d ′ ⌋ d ( i ) \mathbf{\begin{aligned} \sum_{i=1}^nd(i^2)&=\sum_{i=1}^n\sum_{d'\mid i}f(d')d(\frac i{d'})\\ &=\sum_{d'=1}^nf(d')\sum_{i=1}^{\lfloor\frac n{d'}\rfloor}d(i) \end{aligned}} i=1nd(i2)=i=1ndif(d)d(di)=d=1nf(d)i=1dnd(i)
考虑如何求解 f ( i ) \mathbf{f(i)} f(i)前缀和,显然 ∑ i = 1 n f ( i ) = ∑ i = 1 n ∣ μ ( i ) ∣ \mathbf{\sum_{i=1}^nf(i)=\sum_{i=1}^n|\mu(i)|} i=1nf(i)=i=1nμ(i)这个式子表示的实际意义是小于等于n的无平方因子数的个数。因此我们可以利用容斥原理写成 ∑ i = 1 ⌊ n ⌋ μ ( i ) ⌊ n i 2 ⌋ \mathbf{\sum_{i=1}^{\lfloor \sqrt n\rfloor}\mu(i)\lfloor \frac n{i^2}\rfloor} i=1n μ(i)i2n,具体证明见基础数论学习笔记(下)6.15,这个式子可以暴力计算,复杂度是 O ( n ) \mathbf{O(\sqrt n)} O(n )
然后我们再考虑 d ( i ) \mathbf{d(i)} d(i)的前缀和,显然有 ∑ i = 1 n d ( i ) = ∑ i = 1 n ∑ d ′ ∣ i 1 = ∑ i = 1 n ⌊ n i ⌋ \mathbf{\sum_{i=1}^nd(i)=\sum_{i=1}^n\sum_{d'\mid i}1=\sum_{i=1}^n\lfloor\frac ni\rfloor} i=1nd(i)=i=1ndi1=i=1nin,这个式子也可以分块求,然后我们就能够分块求出 ∑ d ′ = 1 n f ( d ′ ) ∑ i = 1 ⌊ n d ′ ⌋ d ( i ) \mathbf{\sum_{d'=1}^nf(d')\sum_{i=1}^{\lfloor\frac n{d'}\rfloor}d(i)} d=1nf(d)i=1dnd(i),也就是最终的答案,然后一个优化使提前预处理出 n 2 3 \mathbf{n^{\frac 23}} n32以内的 f 与 d \mathbf{f与d} fd的前缀和,这样类比杜教筛的话总复杂度可以达到 O ( n 2 3 ) \mathbf{O(n^{\frac 23})} O(n32)

ul n,d[maxn];
int prim[maxn],tot,summu[maxn],N;
char mu[maxn];
bool flag[maxn];
void init(int n){
	mu[1]=1;
	d[1]=1;
	FOR(i,2,n+1){
		if(!flag[i])prim[tot++]=i,mu[i]=-1,d[i]=2,summu[i]=2;
		for(register int j = 0;j<tot && prim[j]*i<=n;++j){
			flag[i*prim[j]]=1;
			if(i%prim[j]==0){
				d[i*prim[j]]=d[i]+d[i]/summu[i];
				summu[i*prim[j]]=summu[i]+1;
				break;
			}
			mu[i*prim[j]]=-mu[i];
			d[i*prim[j]]=2*d[i];
			summu[i*prim[j]]=2;
		}
	}
	FOR(i,1,n+1)d[i]+=d[i-1],summu[i]=(summu[i-1]+abs(mu[i]));
}
ul calf(ul n){
	if(n<=N)return summu[n];
	register int limt=sqrt(n);
	register ul ans=0;
	for(register ll i=1;i<=limt;++i)ans+=mu[i]*(n/(i*i));
	return ans;
}
ul cald(ul n){
	if(n<=N)return d[n];
	register ul i=1,j,ans=0;
	while(i<=n){
		j=n/(n/i);
		ans+=(j-i+1)*(n/i);
		i=j+1;
	}
	return ans;
}
void solve(){
	ul i=1,j,ans=0,pre=0,cur;
	while(i<=n){
		j=n/(n/i);
		ans+=((cur=calf(j))-pre)*cald(n/i);
		i=j+1;
		pre=cur;
	}
	wrn(ans);
}
int main(){
	int t;
	ul mxn=0;
	vector<ul>a;
	rd(&t);
	while(t--){
		rd(&n);
		mxn=max(mxn,n);
		a.push_back(n);
	}
	N=pow(mxn,2.0/3.0);
	if(N<=10000)init(10000);else init(N);
	FOR(i,0,a.size()){
		n=a[i];
		solve();
	}
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值