0.复杂度分析:如何分析代码执行效率和资源消耗

本文介绍了大O复杂度表示法,详细阐述了时间复杂度的加法和乘法法则,并列举了几种常见的时间复杂度量级,如O(1)、O(logn)、O(nlogn)、O(m+n)和O(mn),以及空间复杂度分析方法。通过实例解析了如何分析代码的执行效率和资源消耗。
摘要由CSDN通过智能技术生成

(一)大O(字母大写O)复杂度表示法

若将每条语句执行的单位时间看作一致的,也就将得出一个规律:一段代码的执行时间T(n)与每一条语句总的执行次数(累加数)成正比。即公式:

T(n) = O(f(n))

其中T(n)代表代码执行的总时间 ;n表示数据规模; f(n)表示每条语句执行次数的累加和,此值与n密切相关;公式中的O表示T(n)f(n)成正比。
实际上,大O时间复杂度并不真正具体表示代码执行时间,而是表示代码执行时间随数据规模增大的变化趋势,因此也称为渐进时间复杂度(asymptotic time complexity),简称时间复杂度。
n很大时,公式中的低阶、常量、系数三部分并不左右增长趋势,因此可忽略。此时,只需记最大量级。形如:

T(n) = O(2n+3)     =>    T(n) = O(n)

注:非O(2n), O表示的是变化趋势,而不是某一具体关系。

T(n) = O(2n^2 + 2n + 3)  =>  T(n) = O(n^2)

注:非O(n2 + n),n2 >> n,故n被忽略。

(二)时间复杂度分析方法

1.加法法则

代码总的复杂度等于量级最大的那段代码的复杂度。
我们通常会忽略公式中的常量,低阶和系数只记录最大量级。
如下面一个例子:

int cal(int n) {
   
    int sum_1 = 0;
    int p = 1;
    for(; p <= 100; ++p) {
   
        sum_1 = sum_1 + p;
    }

    int sum_2 = 0int q = 1;
    for(; q <= n; ++q) {
   
        sum_2 = sum_2 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值