迭代与递归

本文介绍了递归的基本概念,即程序调用自身的编程技巧,并指出递归常用于将复杂问题转化为相似的简单问题求解。同时,强调了使用递归必须有明确的递归出口。递归过程分为递推和回归两个阶段。递归在解决背包问题、汉诺塔等问题上表现出色。斐波那契数列作为递归应用的实例被提出。而迭代则是通过重复执行一组指令来计算新值,虽然递归中包含迭代,但迭代不一定需要递归。迭代通常更节省空间,避免深度递归导致的堆栈溢出问题。
摘要由CSDN通过智能技术生成

递归的基本概念:程序调用自身的编程技巧称为递归,是函数自己调用自己.

一个函数在其定义中直接或间接调用自身的一种方法,它通常把一个大型的复杂的问题转化为一个与原问题相似的规模较小的问题来解决,可以极大的减少代码量.递归的能力在于用有限的语句来定义对象的无限集合.

使用递归要注意的有两点:

1)递归就是在过程或函数里面调用自身;

2)在使用递归时,必须有一个明确的递归结束条件,称为递归出口.

 

递归分为两个阶段:

1)递推:把复杂的问题的求解推到比原问题简单一些的问题的求解;

2)回归:当获得最简单的情况后,逐步返回,依次得到复杂的解.

 

利用递归可以解决很多问题:如背包问题,汉诺塔问题,...等.

斐波那契数列为:0,1,1,2,3,5...

fib(0)=0;

fib(1)=1;

fib(n)=fib(n-1)+fib(n-2);

int fib(int n)  
{  
   if(0 == n)  
       return 0;  
   if(1 == n)  
       return 1;  
   if(n > 1)  
       return fib(n-1)+fib(n-2);  
}  

迭代:利用变量的原值推算出变量的一个新值.如果递归是自己调用自己的话,迭代就是A不停的调用B.

递归中一定有迭代,但是迭代中不一定有递归,大部分可以相互转换.能用迭代的不用递归,递归调用函数,浪费空间,并且递归太深容易造成堆栈的溢出.

迭代算法是用计算机解决问题的一种基本方法。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值