文章目录 前言 一、数据预处理 保姆级操作演示 二、训练模型 保姆级操作演示 三、预测结果 保姆级操作演示 四、可视化 保姆级操作演示 结尾 前言 线性回归模型就是基于单一自变量(X)来预测因变量(Y),回归任务的本质在于找到最佳的拟合线,因此机器学习训练模型的过程就是找到这条最佳的拟合线的过程。 一、数据预处理 按照上一步数据预处理知识敲代码: 1.导入库 2.导入数据集 3.检查缺失数据 4.划分数据集 5.特征归一化(缩放) from sklearn.model_selection import train_test_s