第2步 线性回归



前言

线性回归模型就是基于单一自变量(X)来预测因变量(Y),回归任务的本质在于找到最佳的拟合线,因此机器学习训练模型的过程就是找到这条最佳的拟合线的过程。
在这里插入图片描述
在这里插入图片描述


一、数据预处理

按照上一步数据预处理知识敲代码:
1.导入库
2.导入数据集
3.检查缺失数据
4.划分数据集
5.特征归一化(缩放)

from sklearn.model_selection import train_test_s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jet4505

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值