文章目录 前言 一、数据预处理 保姆级操作演示 二、模型搭建 三、预测结果 保姆级操作演示 总结 前言 啥叫多元线性回归? 与简单线性回归一样,都是通过使用一个方程式来拟合数据,预测相应的结果。不同的是,多元线性回归方程,输入的是两个及以上的自变量(即X1、X2、…),而简单线性回归一般只有一个自变量(X)。 另外,与简单线性回归相比,多元线性回归能输出每个特征的权重,因此每个自变量对结果的重要程度便显而易见。 在建模前,多元线性回归需要以下4个前提,也就是所谓的LINE原则: 1.线性:自变量和因变量的关系应该大致呈线性的。 2.呈现多元正态分布。 3.保持误差项的方差齐性(误差