第12步 支持向量机(SVM)

本文介绍了使用SVM进行二类分类的实战应用,以预测用户是否会购买SUV为例。首先,导入必要的库和数据,接着进行数据预处理包括数据集切分和特征缩放。然后,使用SVM进行训练和预测,展示了SVM的关键参数。最后,通过混淆矩阵评估模型性能,并探讨了不同核函数对结果的影响,如linear和rbf。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

支持向量机(Support Vector Machine, SVM),这名字听起来就很高大上,也是一种二类分类模型,据说在深度学习的潜力没有充分发掘出来前,SVM是非常受到追捧的。它的原理就不说了,纯数学的推论,密密麻麻的数学公式宛如天书,我们只需要知道SVM最终是找出一个超曲面把两类样本尽可能的分开,因此它的关键在于如何生成这个超曲面。
简单介绍如下
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
好了,原理忽悠过了,开始进行实战:使用DT算法预测用户是否会购买SUV,没错,还是逻辑回归那个例子,看看传说中的SVM效果如何:


</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jet4505

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值