第16步 机器学习分类实战:数据清洗

文章介绍了数据清理的重要性,包括数据的类型与格式规范,如将分类变量转换为数字编码,处理缺失值的策略,如根据比例选择填充方法,以及如何检测和删除重复值。此外,还讨论了异常值的识别与处理,提供了一些Python代码示例,如使用boxplot进行异常值检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

数据收集好了,接下来需要进行数据清理,也就是过滤和“修改”数据(注意,这个修改不是那个修改),使其更易于探索、理解和建模。
其中,过滤是指去掉不想要或不需要的部分,这样就不需要查看或处理它们。
这个“修改”是指数据的格式不是我们需要的,需要修正。

举个栗子,一般导出来的数据可能是这样的:

在这里插入图片描述
这个太惨了,列都没有分好。

或者这样的:
在这里插入图片描述
这个其实也还好,那种惨不忍睹的找不到了。

最后,来看看,模型认的数据是哪种(这个案例数据是我乱编的):

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jet4505

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值