第48步 深度学习图像识别:RegNet建模(Pytorch)

本文介绍了Facebook提出的RegNet神经网络架构,用于探索网络设计规则,并在ImageNet等任务上表现出色。文章通过PyTorchImageModels库演示了使用RegNetY-400MF进行肺结核胸片识别的迁移学习流程,包括数据预处理、模型构建、训练与评估,并对比了其他模型的适用场景。
摘要由CSDN通过智能技术生成

基于WIN10的64位系统演示

一、写在前面

(1)RegNet

RegNet (Regulated Networks) 是一种由 Facebook AI 的研究者们在 2020 年提出的神经网络架构,旨在探索网络架构设计的各种可能性,并找出最优的网络设计规则。RegNet 的核心理念是网络的深度(Depth)、宽度(Width)以及每层的时间/空间分辨率(Resolution)之间存在某种规律性的关系。通过系统地研究这些关系,可以发现一种

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jet4505

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值