NLP
文章平均质量分 92
振哥在,世界充满爱!
计划+坚持!+思考
展开
-
文献学习-联合抽取J-An attentive neural architecture for joint segmentation and parsing and its application..
在使用自然语言处理 (NLP) 技术处理人类生成的文本时,出现的两个基本子任务是 (i)将纯文本分割为有意义的子单元(例如实体),以及 (ii)依存解析以建立子单元之间的关系。这种文本的结构解释为上游专家系统任务提供了必要的构建模块:例如,通过解释文本房地产广告,人们可能希望提供准确的价格估计和/或为寻找特定房产的最终用户提供选择过滤器——这一切可以依靠了解房间的类型和数量等。在本文中,我们开发了一种相对简单且有效的神经联合模型,该模型同时执行分割和依存解析,而不是像大多数最先进的作品那样一个接一个地执行。原创 2023-07-09 23:43:09 · 340 阅读 · 0 评论 -
文献学习-联合抽取C-Joint Extraction of Biomedical Entities and Relations based on Decomposition and Recombio
重叠的三元组对于生物医学实体和关系提取来说是巨大的挑战。为了提高生物医学实体和关系提取的性能,提出了一种基于分解重组策略的实体和关系联合提取方法来挖掘生物医学文本。我们的方法将实体和关系提取任务分解为三个相关的子模块,即实体标记模块、关系分类模块和重组匹配模块。主要贡献如下:首先,引入了用于联合实体和关系提取的分解和重组端到端学习框架。其次,提出了一种双向预测方法来处理重叠三元组问题。最后,提出了负样本生成方法来减轻这些模块之间的误差累积。原创 2023-06-28 09:43:55 · 335 阅读 · 0 评论 -
文献学习-联合抽取-Joint entity recognition and relation extraction as a multi-head selection problem
用于联合实体识别和关系提取的最先进模型强烈依赖于外部自然语言处理 (NLP) 工具,例如 POS(词性)标记器和依存解析器。因此,此类联合模型的性能取决于从这些 NLP 工具中获得的特征的质量。但是,这些功能对于各种语言和上下文并不总是准确的。在本文中,提出了一种联合神经模型,它同时执行实体识别和关系提取,无需任何手动提取特征或使用任何外部工具。具体来说,我们使用CRF(条件随机场)层对实体识别任务进行建模,并将关系提取任务建模为多头选择问题(即,可能为每个实体识别多个关系。原创 2023-06-24 20:48:47 · 817 阅读 · 0 评论 -
NLP中隐性语义分析及奇异值分解(SVD)-学习笔记
隐形语义分析基于最古老和最常用的降维技术–奇异值分解(SVD)。SVD将一个矩阵分解成3个方阵,其中一个是对角矩阵。原创 2023-01-01 14:50:40 · 1430 阅读 · 2 评论 -
文献学习02-Effective Modeling of Encoder-Decoder Architcture for Joint Entity and Relation Extraction
论文信息(1)题目:Effective Modeling of Encoder-Decoder Architecture for Joint Entity and Relation Extraction (用于联合实体和关系提取的编码器-解码器架构的有效建模)(2)文章下载地址:https://ojs.aaai.org//index.php/AAAI/article/view/6374(3)相关代码:https://github.com/nusnlp/PtrNetDecoding4JERE...原创 2021-12-09 12:17:13 · 1586 阅读 · 0 评论 -
Ablation Study-学习笔记
[1]文章:Entity and Evidence Guided Relation Extraction for DocREDKevin Huang†, Guangtao Wang†, Tengyu Ma‡, Jing Huang†JD AI Research†, Stanford University‡{kevin.huang3, guangtao.wang, jing.huang}@jd.comtengyuma@stanford.edu文章[1]中的4.4节标题为Ablation Study.原创 2021-12-02 21:20:25 · 529 阅读 · 0 评论