自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 计算机视觉 — BOF图像检索

计算机视觉 — BOF图像检索1. BOF图像检索实验原理1.1 基础概念1.1.1 前景:Bag of WordsBag of Words照字面上是将文字归类为包。即在寻找文本的主要内容时,抓取文本中的关键词,根据大概率的关键词来确定文本的中心思想,可用于文章分类。1.1.2 Bag of FeaturesBag of Featuresfeature为特征,即根据特征进行分类。Bag of Feature 是一种图像特征提取方法,参考了Bag of Words的思路,把每幅图像描述为一个局

2021-06-06 21:05:51 660 1

原创 2021-05-23

计算机视觉————相机标定针孔相机模型相机将三维世界中的坐标点(单位:米)映射到二维图像平面(单位:像素)的过程能够用一个几何模型来描述,其中最简单的称为针孔相机模型 (pinhole camera model),其框架如下图所示:其中,涉及到相机标定涉及到了四大坐标系,分别为:像素坐标系:为了描述物体成像后的像点在数字图像上(相片)的坐标而引入,是我们真正从相机内读取到的信息所在的坐标系。单位为个(像素数目)。成像平面坐标系:为了描述成像过程中物体从相机坐标系到图像坐标系的投影透射关系而引入,

2021-05-23 22:32:37 1913

原创 基于RANSAC算法实现全景拼接

一、全景拼接的原理1.1 SIFT特征匹配关于sift算法原理请见上一篇博客,此处不多赘述。见:SIFT算法Python1.2 RANSAC算法 RANSAC的全称是“RANdom SAmple Consensus(随机抽样一致)”。它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的算法,也就是说它有一定的概率得出一个合理的结果,所以为了提高概率必须提高迭代次数。(1)步骤1.随机选择四对匹配特征2.根据DLT计算单应矩阵 H (唯一解)3.对所有匹配

2021-04-25 22:44:08 790 2

原创 图像到图像的映射

图像到图像的映射1.1单应性变换单应性变换是将一个平面内的点映射到另一个平面内的二维投影变换。0单应性变换具有很强的实用性,比如图像配准、图像纠正和纹理扭曲,以及创建全景图像本质上,单应性变换H,按照下边的方程映射二维中的点(齐次坐标意义下):...

2021-04-11 22:39:45 411

原创 SIFT特征提取与检索

SIFT特征提取与检索1、SIFT特征提取算法介绍1.1 算法综述SIFT算法是用来提取图像局部特征的经典算法,SIFT算法的实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向。SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等。2、实现步骤SIFT特征检测主要包括以下4个基本步骤:尺度空间极值检测: 搜索所有尺度上的图像位置。通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。关键点定位:在每个候

2021-03-28 22:16:35 696

原创 Python+OpenCV

Python With OpenCV画直方图import cv2 as cvfrom matplotlib import pyplot as pltdef plot_demo(image): plt.hist(image.ravel(), 256, [0, 256]) #numpy的ravel函数功能是将多维数组降为一维数组 plt.show()def image_hist(image): #画三通道图像的直方图 color = ('b', 'g

2021-03-09 05:32:12 112

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除