RoI Transformer 精读

RoI Transformer是一种解决旋转框检测速度问题的三阶段模型,它由RRoI Leaner和RRoI Warping组成。通过将水平锚框转换为旋转锚框,无需增加锚点数量即可实现精确检测。在DOTA数据集上,该模型表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

旋转框检测模型RRPN是通过生成大量的旋转锚框来实现多角度目标检测,后续提出的旋转框检测模型主要是在此基础上进行细节方面的改进。这种通过生成大量旋转框的方法最主要的缺点是冗余计算导致检测速度很慢。

本文主要内容

本文提出RoI Transformer来解决此问题。RoI Transformer 是一个三阶段检测模型,主要由RRoI Leaner和RRoI Wraping两部分组成,核心思想是把RPN输出的水平锚框HRoI转换为旋转锚框RRoI。此策略无需增加锚点的数量且可以获得精确的RRoI。RoI Transformer检测模型目前在DOTA数据集排名第二。

RoI Transformer检测模型

RoI Transformer检测模型
RoI Transformer检测模型结构如图所示,主要由RRoI Leaner和RRoI Wraping两部分组成。对于RPN生成的每个水平锚框HRoI,都会作为输入传递给RRoI Leaner, RRoI Leaner结构是由PS RoI Align、尺寸为5的全连接层以及解码器构成。PS RoI Align减少特征图的维数,将单个全连接层合并到10个通道,显著提高了计算速度;在全连接层使Rotated Ground Truths(RGTs)相对于HRoI的偏移量回归;解码器将HRoI和偏移量作为输入并输出解码后的RRoI。将特征图和解码后的RRoI传入RRoI Wrapping进行深度特征提取。最后,利用RRoI Transformer输出的特征进行分类和回归。
借下图进一步说明RoI Transformer流程

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值