背景
旋转框检测模型RRPN是通过生成大量的旋转锚框来实现多角度目标检测,后续提出的旋转框检测模型主要是在此基础上进行细节方面的改进。这种通过生成大量旋转框的方法最主要的缺点是冗余计算导致检测速度很慢。
本文主要内容
本文提出RoI Transformer来解决此问题。RoI Transformer 是一个三阶段检测模型,主要由RRoI Leaner和RRoI Wraping两部分组成,核心思想是把RPN输出的水平锚框HRoI转换为旋转锚框RRoI。此策略无需增加锚点的数量且可以获得精确的RRoI。RoI Transformer检测模型目前在DOTA数据集排名第二。
RoI Transformer检测模型
RoI Transformer检测模型结构如图所示,主要由RRoI Leaner和RRoI Wraping两部分组成。对于RPN生成的每个水平锚框HRoI,都会作为输入传递给RRoI Leaner, RRoI Leaner结构是由PS RoI Align、尺寸为5的全连接层以及解码器构成。PS RoI Align减少特征图的维数,将单个全连接层合并到10个通道,显著提高了计算速度;在全连接层使Rotated Ground Truths(RGTs)相对于HRoI的偏移量回归;解码器将HRoI和偏移量作为输入并输出解码后的RRoI。将特征图和解码后的RRoI传入RRoI Wrapping进行深度特征提取。最后,利用RRoI Transformer输出的特征进行分类和回归。
借下图进一步说明RoI Transformer流程