目录
126.ES聚合中的Metric聚合有哪些?如何解释?
ES聚合中的Metric聚合包括以下几种:
- Count:计算匹配的文档数量。
- Sum:对指定字段进行求和。
- Avg:对指定字段进行平均值计算。
- Min:找到指定字段的最小值。
- Max:找到指定字段的最大值。
- Stats:计算指定字段的总计、平均值、最小值和最大值。
- Extended Stats:计算指定字段的总计、平均值、最小值、最大值以及标准差和方差。
- Cardinality:计算指定字段的基数(不重复值的数量)。
- Percentiles:计算指定字段的百分位数,可以指定需要计算的百分位数。
- Percentile Ranks:给定一个数值,计算指定字段中小于等于该数值的百分位数。
- Top Hits:返回每个桶中匹配的文档的顶部N条结果。
- Value Count:对指定字段的非空值进行计数。
- Scripted Metric:使用自定义脚本计算聚合结果。
这些Metric聚合可以提供对数据的各种统计和计算,例如计数、求和、平均值、最大值、最小值、百分位数等。使用这些聚合可以帮助用户深入了解数据的特征和分布情况,从而进行更深入的分析和决策。
127.ES聚合中的管道聚合有哪些?如何理解?
ES(Elasticsearch)中的管道聚合是一种特殊类型的聚合,它可以在聚合结果上执行各种操作,例如计算、转化和过滤等。通过管道聚合,我们可以对聚合结果进行二次计算和分析,从而获得更加详细和有用的数据。
在ES中,管道聚合有以下几种类型:
1. Avg Bucket Pipeline Aggregation(平均分桶管道聚合):在分桶的聚合结果上计算平均值。
2. Max Bucket Pipeline Aggregation(最大分桶管道聚合):在分桶的聚合结果上计算最大值。
3. Min Bucket Pipeline Aggregation(最小分桶管道聚合):在分桶的聚合结果上计算最小值。
4. Sum Bucket Pipeline Aggregation(求和分桶管道聚合):在分桶的聚合结果上计算总和。
5. Stats Bucket Pipeline Aggregation(统计分桶管道聚合):在分桶的聚合结果上计算基本统计信息,如计数、平均值、最大值、最小值和总和。
6. Extended Stats Bucket Pipeline Aggregation(扩展统计分桶管道聚合):在分桶的聚合结果上计算更详细的统计信息,包括方差、标准差和百分位数等。
7. Percentiles Bucket Pipeline Aggregation(百分位数分桶管道聚合):在分桶的聚合结果上计算指定的百分位数。
8. Moving Average Bucket Pipelin