一元二次方程到规范场

这篇博客介绍了数学中的方程理论,从一元二次方程的根推导,讨论了二次函数的交点式,深入到一元三次方程的解决方法。同时,讲解了复数的几何意义,特别是如何从一维扩展到二维空间,并引入四元数以适应三维空间的概念。博客还强调了方程根之间的等价性和代数方程解的存在性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

曹则贤开讲“从一元二次方程到规范场论” 中国科学院2022跨年科学演讲第三场全程回顾

微信文章

从一元二次方程到群论(1):一元二次方程

一元二次方程式两根推导

a x 2 + b x + c = 0 a ( x 2 + b a x ) = − c x 2 + b a x = − c a \begin{aligned} &ax^2+bx+c=0 \\ &a(x^2+\frac{b}{a}x)=-c \\ &x^2+\frac{b}{a}x=-\frac{c}{a} \\ \end{aligned} ax2+bx+c=0a(x2+abx)=cx2+abx=ac
配方法的几何意义:Completing the Square

在这里插入图片描述
x 2 + b x = x 2 + b 2 x + b 2 x = ( x + b 2 ) 2 − ( b 2 ) 2 \begin{aligned} &x^2+bx \\ &=x^2+\frac{b}{2}x+\frac{b}{2}x \\ &=(x+\frac{b}{2})^2-(\frac{b}{2})^2 \\ \end{aligned} x2+bx=x2+2bx+2bx=(x+2b)2(2b)2
由此可得
x 2 + b a x = − c a ( x + b 2 a ) 2 − ( b 2 a ) 2 = − c a ( x + b 2 a ) 2 = ( b 2 a ) 2 − c a x + b 2 a = ± ( b 2 a ) 2 − c a x = − b 2 a ± ( b 2 a ) 2 − c a \begin{aligned} &x^2+\frac{b}{a}x=-\frac{c}{a} \\ &(x+\frac{b}{2a})^2-(\frac{b}{2a})^2=-\frac{c}{a} \\ &(x+\frac{b}{2a})^2=(\frac{b}{2a})^2-\frac{c}{a} \\ &x+\frac{b}{2a}=\pm\sqrt{(\frac{b}{2a})^2-\frac{c}{a}} \\ &x=-\frac{b}{2a}\pm\sqrt{(\frac{b}{2a})^2-\frac{c}{a}} \\ \end{aligned} x2+abx=ac(x+2ab)2(2ab)2=ac(x+2ab)2=(2ab)2acx+2ab=±(2ab)2ac x=2ab±(2ab)2ac

二次函数交点式推导

假设其两根为 x 1 x_1 x1 x 2 x_2 x2,则有
x 1 = − b 2 a + ( b 2 a ) 2 − c a   x 2 = − b 2 a − ( b 2 a ) 2 − c a x_1=-\frac{b}{2a}+\sqrt{(\frac{b}{2a})^2-\frac{c}{a}} \\ ~ \\ x_2=-\frac{b}{2a}-\sqrt{(\frac{b}{2a})^2-\frac{c}{a}} x1=2ab+(2ab)2ac  x2=2ab(2ab)2ac
其中, x 1 x_1 x1 x 2 x_2 x2 形成了共轭,共轭的两个数相加和相乘,平方根都消失了

x 1 + x 2 x_1+x_2 x1+x2 x 1 x 2 x_1x_2 x1x2的结果为
x 1 + x 2 = − b a   x 1 x 2 = ( − b 2 a ) 2 − ( ( b 2 a ) 2 − c a ) 2 = c a x_1 + x_2=-\frac{b}{a} \\ ~ \\ x_1x_2=(-\frac{b}{2a})^2-(\sqrt{(\frac{b}{2a})^2-\frac{c}{a}})^2=\frac{c}{a} x1+x2=ab x1x2=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值