曹则贤开讲“从一元二次方程到规范场论” 中国科学院2022跨年科学演讲第三场全程回顾
一元二次方程式两根推导
a x 2 + b x + c = 0 a ( x 2 + b a x ) = − c x 2 + b a x = − c a \begin{aligned} &ax^2+bx+c=0 \\ &a(x^2+\frac{b}{a}x)=-c \\ &x^2+\frac{b}{a}x=-\frac{c}{a} \\ \end{aligned} ax2+bx+c=0a(x2+abx)=−cx2+abx=−ac
配方法的几何意义:Completing the Square
x 2 + b x = x 2 + b 2 x + b 2 x = ( x + b 2 ) 2 − ( b 2 ) 2 \begin{aligned} &x^2+bx \\ &=x^2+\frac{b}{2}x+\frac{b}{2}x \\ &=(x+\frac{b}{2})^2-(\frac{b}{2})^2 \\ \end{aligned} x2+bx=x2+2bx+2bx=(x+2b)2−(2b)2
由此可得
x 2 + b a x = − c a ( x + b 2 a ) 2 − ( b 2 a ) 2 = − c a ( x + b 2 a ) 2 = ( b 2 a ) 2 − c a x + b 2 a = ± ( b 2 a ) 2 − c a x = − b 2 a ± ( b 2 a ) 2 − c a \begin{aligned} &x^2+\frac{b}{a}x=-\frac{c}{a} \\ &(x+\frac{b}{2a})^2-(\frac{b}{2a})^2=-\frac{c}{a} \\ &(x+\frac{b}{2a})^2=(\frac{b}{2a})^2-\frac{c}{a} \\ &x+\frac{b}{2a}=\pm\sqrt{(\frac{b}{2a})^2-\frac{c}{a}} \\ &x=-\frac{b}{2a}\pm\sqrt{(\frac{b}{2a})^2-\frac{c}{a}} \\ \end{aligned} x2+abx=−ac(x+2ab)2−(2ab)2=−ac(x+2ab)2=(2ab)2−acx+2ab=±(2ab)2−acx=−2ab±(2ab)2−ac
二次函数交点式推导
假设其两根为 x 1 x_1 x1、 x 2 x_2 x2,则有
x 1 = − b 2 a + ( b 2 a ) 2 − c a x 2 = − b 2 a − ( b 2 a ) 2 − c a x_1=-\frac{b}{2a}+\sqrt{(\frac{b}{2a})^2-\frac{c}{a}} \\ ~ \\ x_2=-\frac{b}{2a}-\sqrt{(\frac{b}{2a})^2-\frac{c}{a}} x1=−2ab+(2ab)2−ac x2=−2ab−(2ab)2−ac
其中, x 1 x_1 x1、 x 2 x_2 x2 形成了共轭,共轭的两个数相加和相乘,平方根都消失了
x 1 + x 2 x_1+x_2 x1+x2与 x 1 x 2 x_1x_2 x1x2的结果为
x 1 + x 2 = − b a x 1 x 2 = ( − b 2 a ) 2 − ( ( b 2 a ) 2 − c a ) 2 = c a x_1 + x_2=-\frac{b}{a} \\ ~ \\ x_1x_2=(-\frac{b}{2a})^2-(\sqrt{(\frac{b}{2a})^2-\frac{c}{a}})^2=\frac{c}{a} x1+x2=−ab x1x2=