自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

blotemj.blog.csdn.net

好好学习,天天码字!奥里给!公号众陆小马,百度搜blotemJ不迷路!

  • 博客(330)
  • 资源 (1122)
  • 问答 (5)
  • 收藏
  • 关注

原创 ❤️blotemJ陆小马学习资源分享❤️

网盘资源将以微信公众号向大家分享需要什么资源去陆小马(blotemJ)公众号提出来,我给你找呀.更多资源请到下面or联系:[email protected]: 博客:https://blog.csdn.net/qq_30787727 下载:https://download.csdn.net/user/qq_30787727/uploadsb站:h...

2019-06-22 08:55:59 1819 1

原创 基于目标检测工地安全帽和禁入危险区域识别系统

该项目是使用的程序来训练在智能工地安全领域中头盔目标检测的应用。

2024-04-14 11:05:15 6

原创 【论文、项目:人工智能系列】相关性分析

Holt-Winters指数平滑。Holt线性指数平滑。

2024-04-11 20:19:01 2

原创 【论文、项目:人工智能系列】特征选择

Deep Interest Network(深度兴趣网络)Tree-based methods(基于树的算法)Forward Selection(前向选择)mRMR(基于互信息的最大相关性算法)FP-Growth(频繁项集挖掘算法)Autoencoder(自编码器)MIQ(互信息快速近似算法)RFE(递归特征消除)

2024-04-11 20:17:44 2

原创 【论文、项目:人工智能系列】预测方法

RF-GRU改进的随机森林算法优化。SSA-LSTM麻雀搜索算法优化。PSO-SVR粒子群算法优化。

2024-04-11 20:16:22 3

原创 【论文、项目:人工智能系列】分类方法

引入主成分分析(Principal Component Analysis,简称PCA)和松弛变量(Relaxed Variables)来改进传统ELM算法。WHO-SVM动物社会行为中的分层结构启发,模拟动物社会中不同层次之间的互动和协作。主成分分析(PCA)、支持向量回归(SVR)和某种自适应或调整方法(ARM)RF-PSO-SVM随机森林粒子群优化算法避免过拟合,提高模型的泛化能力。PCA-SSA-BP基于主成分分析(PCA)和奇异值分解(SSA)BBO-SVM蝴蝶觅食和交配行为的启发算法。

2024-04-11 20:14:21

原创 【论文、项目:人工智能系列】特征量化

在图像处理中,特征量化通常涉及将图像中的局部特征描述子映射到一个视觉词典中的视觉单词。它的基本思想是将提取的特征进行某种形式的转换或映射,以便更有效地进行比较、分类或识别。Rgb红绿蓝、hsv色调饱和度明度、lab明度红绿轴黄蓝轴CMYK青色洋红黄色黑色HLS色调亮度饱和度YCrCb(YUV)明亮度色调饱和度XYZ红色亮度绿色亮度蓝色亮度HSB色调饱和度亮度颜色空间。总的来说,特征量化是一种在图像处理和机器学习中广泛使用的技术,它通过将特征映射到更简化的表示形式,提高了数据处理和分类的效率。

2024-04-11 20:09:11

原创 【论文、项目:人工智能系列】语义分割

语义分割(Semantic Segmentation)是计算机视觉领域中的一个重要任务,它涉及将图像中的每个像素分配给一个预定义的类别标签。简单来说,语义分割就是对图像中的每个像素点进行细致的分类,以便识别出图像中的不同对象或区域。在语义分割中,输出通常是一个与输入图像尺寸相同的像素级标签图(Label Map),其中每个像素都被标记为其所属类别的标签。总的来说,语义分割是计算机视觉领域中一个具有挑战性的任务,但随着深度学习技术的不断发展,我们有望在未来看到更多高效、准确的语义分割方法和应用。

2024-04-11 20:06:14

原创 【论文、项目:人工智能系列】图像分割方法

使用条件随机场(CRF)和双向级联区域(Bi-directional Cascaded Region)的结合。基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法、基于特定理论的分割方法。GS-SVM基于网格搜索(Grid Search)和支持向量机。基于层次Agglomerative、Divisive。Sobel、Prewitt、Canny、小波变换。基于密度DBSCAN、Mean Shift。能够有效地处理复杂背景和噪声。最小误差阈值分割方法。

2024-04-11 20:03:40

原创 SVM优化算法有哪些

狼群搜索算法(WPS2007, WPA2013)缎蓝园丁鸟优化算法(SBO2017)海鸥算法优化 SVMCNN-SVM。粒子群算法(PSO*11995)正余弦优化算法(CSA2016)樽海鞘群算法(SSA2017)麻雀搜索算法(SSA2020)萤火虫算法(FA2009)乌鸦搜索(CSA2016)人工鱼群算法(AFSA)烟花算法(FA2010)模拟退火算法优化 SVM。布谷鸟搜索算法(CS)人工蜂群算法(ABC)布谷鸟算法优化 SVM。粒子群算法优化 SVM。天牛须算法优化 SVM。萤火虫算法优化 SVM。

2024-04-10 16:14:39 105

原创 【论文、项目:人工智能系列】图像预处理方法整理

腐蚀、膨胀、开运算、闭运算、边界提取、区域填充、连通分量提取、凸壳。消除噪声、提取区域、测量尺寸、图像滤波、边缘检测和特征提取。简化图像数据、突出感兴趣区域、消除背景噪声。Otsu方法、K-means算法。Ddpm深度去噪扩散概率模型。水平翻转、平移缩放旋转。labelimg标注。消除亮度影响(环境)

2024-04-10 16:10:53 171

原创 341农信真题整理

浙江农林大学11-830、12-830、13-830、14-842、15-842、16-842。湖南农业10、11、12、13、14y、15y、16y、17、18y、21。浙江海洋大学12y、14y、15y、17y、18y、19y。湖南农业大学10、12、13、14、15、16、17、18。河南师范12、13、14、15y、17y、18y。沈阳农业15、16、17y、19y、20、21y。浙江海洋学院12、13、14、15、16、17。河北科技师范学院17y、18y、19y、22。

2024-04-10 15:59:25 4

原创 农信复试题

静态地址重定位是在虚拟空间程序执行之前,由装配程序完成的地址映射工作,它只完成了一个首地址不同的连续地址变换,要求所有待执行的程序必须在程序执行之前完成它们之间的链接,否则将无法得到正确的内存地址和内存空间。其核心思想是以联机的方式得到脱机的效果,具体来说就是在内存中形成缓冲区,在高速设备形成输出井和输入井,通过数据的传递和处理,提高设备的利用率。Linux是一种自由和开放源代码的类UNIX操作系统,它的内核设计简洁,对服务器工作负载进行了优化,能够更好地利用系统资源,提高系统的响应速度和处理能力。

2024-04-10 15:55:06 481

原创 【论文、项目:人工智能系列】15SGD和Adam优化器有哪些改进版

这些改进的优化器在某些任务上可能表现出更好的性能,但选择哪种优化器需要根据具体任务和数据集的特点进行评估。Adam是一种自适应学习率的优化器,结合了Momentum和RMSprop的思想。是一种自适应学习率的优化器,它为每个参数计算一个单独的学习率,并根据参数的梯度历史来调整学习率。是一种改进的梯度下降方法,它使用指数移动平均来计算梯度的平方,并根据这个平均值来调整学习率。这些改进的优化器在深度学习中广泛使用,可以帮助模型更快地收敛,并提高模型的性能。的收敛,并使用自适应学习率来调整每个参数的学习率。

2024-04-08 14:54:26 241

原创 【论文、项目:人工智能系列】14模型参数如何设置

学习率的大小:学习率的大小会影响模型训练的速度和稳定性。通常来说,建议从较小的学习率开始训练模型,然后逐渐增加学习率以观察模型的性能和稳定性。验证集表现:在设置学习率时,可以尝试不同的学习率,并通过验证集来评估模型的性能。学习率策略:不同的学习率策略会对模型的训练产生不同的影响。例如,固定的学习率可能会导致模型训练的不稳定,而动态的学习率调整策略则可以根据模型的表现实时调整学习率。学习率的衰减:在深度学习中,通常会采用学习率衰减的策略,即随着训练的进行,逐渐减小学习率。这样可以提高模型的训练效果和稳定性。

2024-04-07 19:56:19 11

原创 【论文、项目:人工智能系列】线性核、多项式核和高斯核区别

对于简单的线性问题,线性核可能是更好的选择。通过在输入数据点周围放置RBF的中心点,并根据其距离来计算RBF的输出值,可以逼近原始数据的连续函数。需要注意的是,RBF的性能和效果取决于合适的参数选择,如中心点的位置和RBF函数的参数 γ。其中,φ(r)表示RBF函数的输出值,r表示输入样本与中心点之间的距离,x表示输入样本,c表示RBF的中心点,γ表示控制函数形状的参数。4. 数据降维:RBF可以用于数据降维,例如在主成分分析(PCA)中,通过构建基于RBF的核矩阵来实现数据的非线性映射和降维。

2024-04-07 19:52:01 5

原创 【论文、项目:人工智能系列】13轻量化网络有哪些

这些轻量级网络在保持精度的同时,有效地减少了模型的体积和计算量,提高了模型的推理速度。:采用复合型网络结构,结合了深度、宽度和分辨率三个维度来提高网络的性能和效率。:采用微型的网络结构,结合了深度可分离卷积和逐点卷积等技术来减少参数和计算量。系列:采用混合精度训练的方法,利用较小的模型和参数量实现高效的推理。结构的轻量级网络,采用分组卷积和残差连接等技术来减少参数和计算量。:通过动态稀疏卷积来减少参数和计算量,提高网络的性能和效率。:通过学习权重量化来减少参数和计算量,提高网络的性能和效率。

2024-04-05 20:09:50 9

原创 【论文、项目:人工智能系列】12迁移学习训练

避免从头开始训练:迁移学习可以避免从头开始训练模型的繁琐过程,直接利用预训练模型的参数作为初始参数,然后进行微调或特征学习。迁移学习将这些特征迁移到分类任务中,能够提高模型的分类准确性和鲁棒性。):这种方法假设源任务和目标任务之间的模型参数是相似的,因此可以使用源任务的模型参数来初始化目标任务的模型参数。):这种方法假设源任务和目标任务中的数据分布是相似的,因此可以使用源任务中的数据来对目标任务进行建模。):这种方法假设源任务和目标任务之间的关系是相似的,因此可以使用源任务中的关系来学习目标任务中的关系。

2024-04-05 20:03:31 121

原创 【论文、项目:人工智能系列】11不同的机器学习任务对应哪些不同的模型

出现了长短期记忆网络(Long Short-Term Memory,LSTM)和门控循环单元(Gated Recurrent Unit,GRU)等改进的RNN模型。- 网络的深度和复杂性逐渐增加,出现了多种架构,如LeNet、AlexNet、VGG、ResNet和EfficientNet等。- 结合了非线性函数形式,例如使用逻辑斯蒂函数(logistic function)进行分类。- R-CNN系列(如Fast R-CNN、Faster R-CNN)- 最早用于二元分类问题,基于线性回归的分类模型。

2024-04-04 12:03:41 9

原创 【论文、项目:人工智能系列】10YOLO模型优化思路

模型可改进的部分介绍

2024-04-04 11:51:47 256

原创 【论文、项目:人工智能系列】9卷积神经网络

输入层Input-卷积层CONV(提取特征)-池化层POOL(压缩特征图)-全连接层FC(分类)-输出层Output。

2024-04-03 17:05:25 277

原创 【论文、项目:人工智能系列】8神经网络

在神经网络中,每一层的神经元接收上一层传递下来的信号,通过权重和偏置进行加权和求和,然后经过激活函数产生下一层的输入信号。在前向传播过程中,输入数据通过每一层的权重和偏置进行线性变换,并经过激活函数进行非线性变换,然后输出到下一层,直到达到输出层。神经网络训练或优化的过程就是最小化损失函数的过程,损失函数越小,说明模型的预测值就越接近真实值,模型的健壮性也就越好。反向传播根据模型的预测结果和真实标签之间的差异,通过链式法则逆向计算梯度,并将梯度从输出层传播回网络的每一层,用于更新模型的参数。

2024-04-03 16:45:31 125

原创 【论文、项目:人工智能系列】7模型构建

实际需求分析完了,数据准备完了,到这里重头戏来了,往往也是大家的兴趣所在。重点:数据预处理,选方法,各种调试,特征工程,不断实验。

2024-04-02 21:55:38 218

原创 【论文、项目:人工智能系列】6数据预处理

数据预处理的方法和应用下面是数据预处理的方法和应用:1. 数据清洗:- 删除异常值、缺失值和重复数据;- 通过插值等方法填补缺失值;- 改正数据不一致或错误(例如拼写错误和数据格式错误);- 降噪使数据更干净。这些数据清洗方法可以应用于任何需要数据分析的数据集中。2. 数据集成:将多个数据源的数据进行合并,包括:- 横向合并:将多个表按行连接成一个表;- 纵向合并:将多个表按列合并成一个表;- 基于时间轴的合并:将两个数据集基于时间轴关联起来。

2024-04-02 21:11:44 117 1

原创 【论文、项目:人工智能系列】5数据采集

本系列主要讲思路,所以安排的顺序更灵活一些,符合认知逐渐提高的过程。

2024-04-01 22:00:23 398

原创 【论文、项目:人工智能系列】4数据准备

4. 时间序列数据(Time Series Data):时间序列数据表示按照一定时间顺序采样的数据点,时间通常作为数据的一个维度。3. 文本数据(Text Data):文本数据表示以自然语言或字符为单位的数据,通常涉及到语义和语法的解析。1. 数值型数据(Numerical Data):数值型数据表示具体的数值或测量结果,可以进行数学运算和统计分析。7. 视频数据(Video Data):视频数据表示连续的图片序列,以一定的帧率播放。根据数据的形态特点和分析要求,选择合适的数据处理和分析方法是非常重要的。

2024-04-01 21:22:09 23

原创 【论文、项目:人工智能系列】3模型评估

在进一步学习之前,需要了解一下模型好不好该怎么衡量,有哪些评估方法,然后才能有一个较为清晰的目标,是提高准确率或者轻量化还是速度等。本系列主要是视觉风向,所以主要介绍视觉相关。

2024-04-01 20:44:17 196

原创 【论文、项目:人工智能系列】2实验设计方案

在第一节介绍了部分基本知识,有一个初步了解,无论是为了产出成果(论文)还是一个项目,首先要有一个实验设计或者方案,整理思路和流程,这样才能避免到了后期出现一些根本性错误,比如数据采集不合适、不完整,方法选取不对等。首先看流程。

2024-03-31 22:53:42 18

原创 【论文、项目:人工智能系列】1机器学习

本系列根据学习路线进行系统整理,便于理顺知识的前后逻辑关系,提高学习的效率和质量。学习路线:人工智能-机器学习-深度学习-神经网络-计算机视觉应用。

2024-03-31 22:06:23 176 1

原创 三线表格式制作

在选择菜单栏上的【表格工具】-【设计】,在表格样式里点击右下角的下拉三角,选择【新建表格样式】。以后再想使用三线表的时候,插入表格,然后在表格样式中选择【三线表】的样式就可以直接替换了。这里我们需要点击窗口左下角的【格式】-【边框与底纹】,这样就进入到我们熟悉的窗口了。先设置宽度为「1.5 磅」,然后再分别勾选【上边框】和【下边框】,点击【确定】。或者直接右键点击【三线表的样式】,将其设置为默认表格样式,就可以一劳永逸了~在窗口中,把【将格式应用于整个表格】更改为【将格式应用于标题行】;

2024-03-30 22:29:28 94

原创 农业物联网

农业物联网一般应用是将大量的传感器节点构成监控网络,通过各种传感器采集信息,以帮助农民及时发现问题,并且准确地确定发生问题的位置,这样农业将逐渐地从以人力为中心、依赖于孤立机械的生产模式转向以信息和软件为中心的生产模式,从而大量使用各种自动化、智能化、远程控制的生产设备。农产品与食品安全:产地环境,产后、贮藏加工、物流运输、供应链可追溯系统;农业生态环境管理:土壤、大气、水质、气象、灾害;生产过程管理:农田精耕细作、设施农业、健康养殖;农业资源管理:农用土地资源、水资源、生产资料;

2024-03-30 19:24:19 6

原创 多源信息融合

多源信息融合是对多种数据进行认知、综合、判断的过程,参与融合的数据往往具有:多源性、异构性、不完备性等,按照融合的层次不同,信息融合可以分为:数据级融合、模型级融合(特征级融合)、决策级融合。决策级融合在三者中是最高层次的融合,是最高层面的智能化融合,是建立在模型融合的基础上对于最终的处理结果进行综合的决策。模型级融合是处于三种融合中间层次的融合,较为智能化,优点是对原始的数据进行了提取和处理进行融合,在数据量上降低了,带来的是计算量的减少,缺点是信息损失会带来数据精度的下降。

2024-03-30 19:22:29 409

原创 农业工程相关期刊

美国农业工程协会]ASAE会刊。亚洲、非洲和拉丁美洲的农业机械化。韩国应用生物化学学会杂志。[农场主]阿格里科拉工程。INMATEH-农业工程。国际农业和生物工程杂志。美国农业工程师协会汇刊。农业生物环境与能源工程。巴西环境农业发展报告。美国土壤科学学会期刊。计算机与农业电子技术。

2024-03-30 18:04:34 8

原创 宝塔面板服务器部署

使用命令行执行:java –jar ruoyi.jar 或者执行脚本:ruoyi/bin/run.bat。在ruoyi项目的bin目录下执行package.bat打包Web工程,生成war/jar包文件。ruoyi/pom.xml中的packaging修改为war,放入tomcat服务器webapps。提示:多模块版本会生成在ruoyi/ruoyi-admin模块下target文件夹。提示: 多模块版本在ruoyi/ruoyi-admin模块下修改pom.xml。chmod 777 目录。

2023-11-04 16:23:04 196

原创 mysql数据库远程访问

GRANT ALL PRIVILEGES ON *.* TO 'app'@'%' IDENTIFIED BY '这里是root密码' WITH GRANT OPTION;GRANT ALL PRIVILEGES ON *.* TO 'app'@'%' IDENTIFIED BY '这里是root密码' WITH GRANT OPTION;

2023-11-04 16:21:49 109

原创 tomcat日志文件说明

是应用初始化(listener, filter, servlet)未处理的异常最后被tomcat捕获而输出的日志,它也是包含tomcat的启动和暂停时的运行日志,但它没有catalina.2018-09-19.log 日志全。是tomcat的启动和暂停时的运行日志,注意,它和catalina.out是里面的内容是不一样的。存放访问tomcat的请求的所有地址以及请求的路径、时间,请求协议以及返回码等信息(重要)。是放tomcat的自带的manager项目的日志信息的,也没有看到有什么重要的日志信息。

2023-11-04 16:15:08 142

原创 用go语言写一个超级账本的智能合约(示例)

这只是一个示例的超级账本智能合约代码,实际情况下需要根据具体的需求编写智能合约的相关代码,同时加入适当的异常处理和安全性防护措施。还需要在开发智能合约之前熟悉Hyperledger Fabric中的智能合约开发流程和机制,以便正确部署和使用智能合约。使用了Go语言和Hyperledger Fabric的智能合约语言——Chaincode来编写。

2023-06-09 09:07:25 447

原创 区块链超级账本hyperledger-fabric环境搭建,超详细

由于拉取国外镜像很慢,设置你的阿里服务器中的容器镜像加速器https://cr.console.aliyun.com/cn-hangzhou/instances/mirrors。生成证书和密钥:命令成功执行后会生成1个orderer + 4个peer + 1个CLI的网络结构,4个peer包含在2个org中。"registry-mirrors": ["https://你的.mirror.aliyuncs.com"]产生错误,大概的意思就是不能建立新的连接,不能和新的节点通信。

2023-05-28 16:18:34 368

原创 农业工程与信息技术介绍

农业信息化的实现可以推动农业现代化,提高农业技术水平和生产效率,促进农业转型升级,满足消费者对农产品质量安全和绿色可持续的需求。2. 农业大数据:利用云计算、人工智能等技术,对农业生产过程中产生的大量数据进行处理和分析,提高农业生产效益,实现科学决策。1. 农业物联网:利用物联网技术,实现农业生产装备和设施的互联互通,实现数据的自动采集和实时监测,为精准农业提供数据支持。总之,农业工程与信息技术的结合将会为农业产业注入新的活力,提高农业生产效益,使农业更加可持续,实现现代化农业。

2023-05-28 16:00:20 737

原创 数字电路和模拟电路应该怎么学

学习模拟电路,需要掌握电路基本理论知识,如电路稳定性、电路频率响应、放大器、滤波器等。5. 熟练使用模拟电路分析与设计工具,如MATLAB、Multisim等,通过实际模拟与仿真加深理解,并对电路进行优化和设计。2. 学习电路元件的工作原理,包括二极管、晶体管、MOS管等电路基本元件的工作原理,并且了解不同种类电路元件的特点;1. 学习数字电路基础理论知识,了解数字逻辑、二进制、数字信号、门电路、触发器等的基本概念及原理;3. 熟练掌握基本电路的分析,包括放大器电路、滤波电路、振荡电路等;

2023-05-28 15:55:29 571

32、超大屏幕点阵显示.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

27、自行车测速仿真.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

28、lcd-12864应用.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

26、智能温控器.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

24、单片机水塔控制系统.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

25、数控直流稳压电源.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

21、红外遥控模拟.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

18、步进电机控制_液晶显示.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

16、485全双工通信应用.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

17、AT89C51对直流电动机的驱动.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

19、步进电机控制程序液晶显示.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

14、温度计设计.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

13、非常形象的交通灯控制设计.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

09、LCD滚动显示汉字.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

08、DS1302时钟+1602液晶.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

10、Max7221动态显示.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

07、10BitDA正弦信号发生器.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

06、ad0831_lcd_da0808_ds1302_24c64的应用.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

05、AD0832设计的电压表32X16点阵显示.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

03、多变循环彩灯.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

基于目标检测工地安全帽和禁入危险区域识别系统.rar

基于目标检测工地安全帽和禁入危险区域识别系统

2024-04-14

35、485全双工通信.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

36、可预设电压的数控电源(功能强大).rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

34、8通道自动温度检测系统仿真(含原程序).rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

33、创意LOVE彩灯欣赏.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

31、编码开关试验.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

29、密码锁.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

30、万年历.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

23、数控云台master.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

22、直流电机测速+中文液晶显示.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

20、超级终端.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

11、播放音乐.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

12、单片机设计2008奥运会.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

15、字符液晶1602仿真测试.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

04、51单片机12864大液晶屏proteus仿真.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

02、16X192点阵程序.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

43、单片机水塔控制系统.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

44、舞蹈机器人步进机仿真.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

01、12位AD_DS1621与12864液晶.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

41、模拟串口.rar

51系列单片机竞赛设计实例程序PROTEUS仿真

2024-04-12

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除