数据预处理的方法和应用
下面是数据预处理的方法和应用:
1. 数据清洗:
- 删除异常值、缺失值和重复数据;
- 通过插值等方法填补缺失值;
- 改正数据不一致或错误(例如拼写错误和数据格式错误);
- 降噪使数据更干净。
这些数据清洗方法可以应用于任何需要数据分析的数据集中。
2. 数据集成:
将多个数据源的数据进行合并,包括:
下面是数据预处理的方法和应用:
1. 数据清洗:
- 删除异常值、缺失值和重复数据;
- 通过插值等方法填补缺失值;
- 改正数据不一致或错误(例如拼写错误和数据格式错误);
- 降噪使数据更干净。
这些数据清洗方法可以应用于任何需要数据分析的数据集中。
2. 数据集成:
将多个数据源的数据进行合并,包括: