计算机视觉技术方法(图像识别、优化方法、各类模型及其改进策略)

本文主要介绍了计算机视觉相关的多种技术和方法,包括图像识别、优化方法、各类模型及其改进策略等,具体内容如下:

一、Anaconda相关操作

切换虚拟环境:使用conda activate py命令切换到名为py的虚拟环境。
启动Jupyter - Notebook:在虚拟环境中输入jupyter - notebook即可启动。

二、计算机视觉相关技术及问题

(一)图像识别

存在的问题
有限的训练数据:需大量标记数据,但某些任务难以获取足够数量和质量的数据。
数据偏见:训练数据存在偏见会导致算法误判,如特定种族人脸识别问题。
物体遮挡和变形:物体可能被遮挡或因多种因素变形,影响识别结果。
对抗性示例:输入数据微小扰动可使算法错误分类,威胁可信度和稳定性。
复杂场景和背景噪声:复杂场景和噪声使物体识别困难

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆小马

赏个核桃让我补补脑呗!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值