本文主要介绍了计算机视觉相关的多种技术和方法,包括图像识别、优化方法、各类模型及其改进策略等,具体内容如下:
一、Anaconda相关操作
• 切换虚拟环境:使用conda activate py
命令切换到名为py
的虚拟环境。
• 启动Jupyter - Notebook:在虚拟环境中输入jupyter - notebook
即可启动。
二、计算机视觉相关技术及问题
(一)图像识别
• 存在的问题
◦ 有限的训练数据:需大量标记数据,但某些任务难以获取足够数量和质量的数据。
◦ 数据偏见:训练数据存在偏见会导致算法误判,如特定种族人脸识别问题。
◦ 物体遮挡和变形:物体可能被遮挡或因多种因素变形,影响识别结果。
◦ 对抗性示例:输入数据微小扰动可使算法错误分类,威胁可信度和稳定性。
◦ 复杂场景和背景噪声:复杂场景和噪声使物体识别困难