机器学习、深度学习、强化学习、迁移学习

致力于用AI解决生活中的难题,技术驱动生活

  • 博客(63)
  • 资源 (49)
  • 问答 (1)
  • 收藏
  • 关注

原创 python机器学习,深度学习

python机器学习深度学习代做

2022-01-14 23:41:06 1106 1

原创 pytorch pso优化cnn-lstm 智慧海洋-渔船轨迹识别

本文主要讲解:pytorch pso优化cnn-lstm 智慧海洋-渔船轨迹识别

2022-11-12 14:53:47 641

原创 鲸鱼算法优化LSTM超参数-神经元个数-dropout-batch_size

本文主要讲解:使用鲸鱼算法优化LSTM超参数-神经元个数-dropout-batch_size

2022-11-12 14:40:25 1292

原创 灰狼算法优化LSTM超参数-神经元个数-dropout-batch_size

本文主要讲解:使用灰狼算法优化LSTM超参数-神经元个数-dropout-batch_size

2022-11-12 14:27:55 601 4

原创 PSO粒子群优化-BP神经网络-优化神经元个数dropout和batch_size

本文主要讲解:PSO粒子群优化-BP神经网络-优化神经网络神经元个数dropout和batch_size

2022-08-19 23:10:47 1237

原创 PSO粒子群优化CNN-优化神经网络神经元个数dropout和batch_size等超参数

本文主要讲解:PSO粒子群优化-CNN-优化神经网络神经元个数dropout和batch_size,

2022-08-19 22:58:44 1303 1

原创 python如何删除数据中含有“.0.01“的异常数据

本文主要讲解:使用python删除数据中含有".0.01"的异常数据

2022-08-13 12:18:08 448

原创 贝叶斯优化LSTM超参数

本文主要讲解:使用贝叶斯优化LSTM超参数

2022-08-04 13:24:44 2076 5

原创 PSO优化GRU-LSTM超参数

本文主要讲解:使用PSO优化GRU-LSTM超参数,神经元个数、学习率、dropout和batch_size建立GRU-LSTM模型定义PSO的参数:最大迭代次数、最大惯性权重、最小惯性权重、粒子数量、所有粒子的位置和速度、个体经历的最佳位置和全局最佳位置、每个个体的历史最佳适应值定义超参数搜索范围计算初始全局最优、全局最优参数、画适应度的图使用PSO找到的最好的超参数来重新训练模型评估模型:MSE、RMSE、MAE、MAPE、SMAPE、R2...

2022-08-02 22:42:48 2026 5

原创 遗传算法GA-LSTM-优化神经网络神经元个数-dropout-batch_size

本文主要讲解使用遗传算法GA-LSTM-优化神经网络神经元个数-dropout-batch_size

2022-08-01 22:23:03 443 1

原创 SE-ResNet34对结构性数据进行多分类

本文主要讲解SE-ResNet34对结构性数据进行多分类

2022-07-31 22:53:42 351

原创 交叉熵损失和focal_loss对比-BP神经网络

本文主要讲解交叉熵损失(categorical_crossentropy)和focal_loss对比-BP神经网络

2022-07-30 19:27:32 339

原创 CatBoost自动调参—Optuna和Hyperopt耗时和效果对比

本文主要讲解:Optuna和Hyperopt性能对比(catboost示例)

2022-05-05 20:07:54 1104

原创 自然语言处理NLP面试题

● Word2Vec中skip-gram是什么,Negative Sampling怎么做参考回答:Word2Vec通过学习文本然后用词向量的方式表征词的语义信息,然后使得语义相似的单词在嵌入式空间中的距离很近。而在Word2Vec模型中有Skip-Gram和CBOW两种模式,Skip-Gram是给定输入单词来预测上下文,而CBOW与之相反,是给定上下文来预测输入单词。Negative Sampling是对于给定的词,并生成其负采样词集合的一种策略,已知有一个词,这个词可以看做一个正例,而它的上下文词集可

2022-05-05 19:05:19 233

原创 optuna自动调参框架对lgb的超参进行优化

1、摘要本文主要讲解:使用微软自动化机器学习框架Auto ML-NNI对lgb的超参进行优化

2022-05-05 19:03:17 1292

原创 CNN+LSTM多通道特征组合模型

本文主要讲解:CNN+LSTM多通道特征组合模型

2022-05-05 18:52:01 2734

原创 cnn+lstm+attention对时序数据进行预测

本文主要讲解:cnn+lstm+attention对时序数据进行预测

2022-05-05 18:44:24 8388 72

原创 SSA麻雀算法-LSTM-优化神经网络神经元个数-dropout-batch_size

1、摘要本文主要讲解:使用SSA麻雀算法-LSTM-优化神经网络神经元个数-dropout-batch_size主要思路:SSA Parameters :优化函数、粒子数量、搜索维度、迭代次数

2022-03-28 21:13:28 5534 25

原创 PSO粒子群优化-LSTM-优化神经网络神经元个数dropout和batch_size

1、摘要本文主要讲解:PSO粒子群优化-LSTM-优化神经网络神经元个数dropout和batch_size,目标为对沪深300价格进行预测主要思路:PSO Parameters :粒子数量、搜索维度、所有粒子的位置和速度、个体经历的最佳位置和全局最佳位置、每个个体的历史最佳适应值LSTM Parameters 神经网络第一层神经元个数、神经网络第二层神经元个数、dropout比率、batch_size开始搜索:初始粒子适应度计算、计算初始全局最优、计算适应值、初始全局最优参数、适应度函数、更新

2022-01-12 20:59:02 8269 13

原创 python-在dataframe中删除某行当某列值为nan时?

1、摘要本文主要讲解:python-在dataframe中删除某行当某列值为nan时?主要思路:找到某列值为nan的索引使用drop函数按索引删除行

2021-12-01 14:05:21 1537

原创 PSO粒子群优化-LSTM-pyswarms框架-实现期货价格预测

1、摘要本文主要讲解:PSO粒子群优化-LSTM-pyswarms框架-实现期货价格预测主要思路:从网上找到影响期货价格预测的相关数据,爬取下来并处理好,形成时间序列训练数据使用train_test_split划分训练集和测试集训练数据和测试数据进行标准化处理:StandardScaler.fit_transform建立LSTM模型,激活函数用relu,使用SGD去优化使用pyswarms更新模型的权重画PSO-LSTM实际值与预测值结果图2、数据介绍上海期货交易所每月行情,请看文末

2021-10-30 20:29:04 4153 4

原创 SinGAN一张照片即可生成同样的照片(附简化版代码)

1、摘要本文主要讲解:SinGAN-一张照片即可生成一模一样的照片(附简化版代码)主要思路:先由一个Z_N输入到G_N的生成器得到生成图像(这一步是单纯由噪声生成,其他生成器的输入都是由随机噪声图像z_n和上一层生成的 上采样到当前生成器尺寸组成)。接着利用生成图像的图像块(每一层图像块的大小不一样,按照由粗糙到精细、由大到小)和当前层的图像块(由训练数据下采样得到)放入判别器中进行判断,直到两者不能被判别器区分。通过这种一层一层、由下往上的训练过程,得到最终的结果。2、相关技术SinGA

2021-10-09 23:01:09 1874 4

原创 fastapi写get和post接口并调用_用python直接启动

1、摘要本文主要讲解:fastapi写get和post接口并调用_用python直接启动主要思路:安装fastapi、pydantic、uvicorn撰写接口用requests测试并调用2、相关技术安装步骤pip install fastapi pydantic uvicorn最新的 Python web框架的性能响应排行版,fastapi排行老三3、完整代码和步骤主运行程序入口import uvicornfrom fastapi import FastAPIfrom p

2021-09-03 22:37:41 1641

原创 GAN变种CGAN_DCGAN_EBGAN跑Fashion_mnist、KMNIST、QMNIST

1、摘要本文主要讲解:使用GAN变种ACGAN、CGAN、DCGAN、EBGAN跑minst、Fashion_mnist、KMINST、QMINST四种数据集主要思路:先下载KMINST、QMINST数据集,因为这两种代码没法直接下安装pytorch-gpu版本才能跑得快理解各种GAN的变种2、数据介绍KMINST3、相关技术ACGAN是在CGAN基础上的进一步拓展,采用辅助分类器(Auxiliary Classifier)使得GAN获取的图像分类的功能。CGAN通过结合标签信息来提

2021-08-05 23:08:01 487 2

原创 python_pyecharts画三维折线图

1、摘要本文主要讲解:使用python中的pyecharts画三维折线图主要思路:将数据处理成[[x…],[y…],[z…]]的形式使用Line3D函数渲染2、数据介绍数据为简单的三维数据3、相关技术pyecharts是一款将python与echarts结合的强大的数据可视化工具Line3D制作三维折线图4、完整代码和步骤代码输出如下:主运行程序入口import pyecharts.options as optsfrom pyecharts.charts import Li

2021-08-04 22:51:42 2150

原创 python_多点拟合曲线并计算曲率半径

1、摘要本文主要讲解:python_多点拟合二次曲线,再选取两边和中点拟合圆,计算曲率半径主要思路:使用numpy中的np.polyfit(x, y, 2)和 np.poly1d(f1)两个函数拟合二次函数选取拟合的二次函数中的两边和中点拟合圆利用这三点计算曲率半径根据这些数据画拟合图2、数据介绍数据可使用任何列表数据3、相关技术np.polyfit多项式拟合,第三个参数为x的几次幂np.poly1d得到多项式系数np.matmul两个numpy数组的矩阵相乘曲率半径最小二乘

2021-08-03 23:14:56 2088

原创 NNI使用python文件直接启动参数调优

1、摘要本文主要讲解:NNI使用python文件直接启动参数调优,将yml文件和json文件集成到python文件中主要思路:使用lgb算法训练并保存模型写好需要NNI调参的主文件将yml文件和json文件集成到python文件中,获取最优参数获取到最优参数后将该参数给算法重新运行2、数据介绍凯斯西储大学轴承数据中心:该数据可以用于从振动数据中找到轴承的故障类型GitHub详细介绍3、相关技术NNI (Neural Network Intelligence) 是一个轻量但强大的工具

2021-08-03 22:44:07 653

原创 孤立森林(IsolationForest)算法对数据进行异常检测

1、摘要本文主要讲解:使用孤立森林(IsolationForest)算法对主要思路:2、数据介绍3、相关技术4、完整代码和步骤代码输出如下:主运行程序入口在这里插入代码片5、学习链接

2021-07-25 10:57:05 1815 3

原创 GAN变种ACGAN利用手写数字识别mnist生成手写数字

1、摘要本文主要讲解:GAN的变种ACGAN实现手写数字识别并生成手写图片主要思路:Initialize generator and discriminatorInitialize weightsConfigure data loaderOptimizers AdamTrain GeneratorTrain DiscriminatorSaves a grid of generated digits ranging from 0 to 92、数据介绍minst手写数字识别数据集M

2021-06-24 22:56:02 920 5

原创 AutoML-NNI中TPE对lgb算法的超参调参并优化

1、摘要本文主要讲解:使用微软自动化机器学习框架Auto ML-NNI对lgb的超参进行优化主要思路:设置需要优化的参数,用json格式保存为一个文件设置yml文件,用于调参算法和文件的配置写python文件,使用nni获取参数并调优参数使用 nnictl create 命令运行yml文件实现调优将调优后的网络参数放入默认参数中,运行python文件,实现调参优化并训练好模型2、数据介绍数据请到GitHub自行下载,参考文末的学习链接此数据为回归训练数据,第一列为标签列此数据为回

2021-06-20 12:33:34 934 1

原创 微软AutoML平台NNI,ENAS基于参数共享的高效神经网络结构搜索

1、摘要ENAS——基于参数共享的高效神经网络结构搜索。ENAS使用子模型之间的参数共享来加速NAS进程。 在 ENAS 中,Contoller 学习在大的计算图中搜索最有子图的方式来发现神经网络。 Controller 通过梯度策略训练,从而选择出能在验证集上有最大期望奖励的子图。 同时对与所选子图对应的模型进行训练,以最小化规范交叉熵损失。2、相关技术介绍本文使用Pytorch实现ENAS,包括通用的强化学习的 Controller(用RL变换图的控制器),以及能交替训练目标网络和 Control

2021-05-22 15:55:41 525 1

原创 如何在BigQuant跑出夏普5.67的策略-附赠其他策略

BigQuant简介BigQuant AI 量化平台引领投资未来以AI赋能投资,为投资者提供企业级AI平台、量化投资大数据、AI投研工具、Quant成长体系和社区AI量化策略什么是量化投资?什么是人工智能?机器学习被评为人工智能中最能体现人类智慧的技术,开发AI量化策略我们可以理解为将机器学习应用在量化投资领域。我们通过下面一张图来直观理解一下什么是机器学习:人类对新问题做出有效决策依靠的是过去积累的许多经验,并对经验进行利用,而对机器来说,“经验”以“数据”方式存在,机器从过去众多“数据”

2021-05-07 23:04:13 1917 3

原创 python_量化交易_舆情分析_百度情绪分析_分析股票利好利空比例

1、摘要本文主要内容:使用百度情绪分析接口评估股票近半年的新闻,评估新闻属于利好还是利空,最终统计利好和利空的比例,供选股做参考本文福利:赠送百度AppID:应用的唯一标识AppKey:公匙(相当于账号)AppSecret:私匙(相当于密码)2、主要思路选择自己要评估的股票代码数组从金融界行情中心获取股票新闻信息得到页面的内容并保存调用百度云自然语言处理接口,进行情感倾向分析统计利好和利空的比例3、代码import osimport reimport lxml # 一个Py

2021-03-14 16:17:21 2064 12

原创 python_pygame_alpha-beta剪枝算法_玩中国象棋

本文主要内容:python Pygame alpha-beta剪枝算法 玩中国象棋 相当于入门水平,我还是能下赢它完整简洁并有详细注释的代码:python Pygame alpha-beta剪枝算法 玩中国象棋 相当于入门水平运行入口为:chinachess.py算法和代码解释请查看参考文献里的文章1、界面演示2、关键代码可视化中国象棋运行入口import timeimport pygameimport ChinaChess.constantsfrom ChinaChess

2021-03-14 14:56:24 1537 5

原创 python_强化学习算法DQN_玩五子棋游戏

本文公开一个基于强化学习算法DQN的五子棋游戏自动下棋算法源码,并对思路进行讲解。源码地址:python_强化学习算法DQN_玩五子棋游戏一个基于CNN构成的DQN算法的8*8的五子棋游戏1、Q-Learning介绍Q-Learning的思想并不是很复杂,很多文章都有详细的介绍,这里只是简单举个例子,不做详细讲解。如何用简单例子讲解 Q - learning 的具体过程?2、DQN介绍DQN也叫deepQ-Learning,在Q-Learning前面加一个Deep。Q-Learning有一

2021-03-14 14:38:27 5594 9

原创 Python_强化学习_Q-Learning算法_二维迷宫游戏

在该项目中,你将使用强化学习算法(本文使用的Q-Learning),实现一个自动走迷宫的机器人。机器人初始位置在地图左上角。在我们的迷宫中,有墙壁(黑色方块)、元宝(黄色圆块)及终点(绿色方块)。机器人要尽可能避开陷阱,并且拿到元宝后,以最少的步子到达终点。机器人可执行的动作包括:向左走 L 、向右走 R 、向上走 U 、向下走

2021-03-14 13:10:22 4408 5

转载 AI人年度必看的222页报告!九大要点解读,中国AI论文引用首超美国

原文链接智东西(公众号:zhidxcom)编译 | 智东西编辑部编辑 | 漠影智东西3月4日消息,斯坦福大学刚刚发布一份222页的《2021年度AI指数报告》,从跨越十年的时间维度,对人工智能技术和产业的发展进行了分析解读。这是人工智能学术人和产业人每年必看的一份报告。自2017年以来,斯坦福大学连续4年推出AI指数报告,每一份都以包罗万象、数据详实而广受好评。《2021年度AI指数报告》涉及人工智能的学术研究、技术趋势、落地领域、国家政策、区域差异、求学就业、伦理等众多方面,麦肯锡、谷歌、Open

2021-03-05 14:03:02 1363

原创 山东数据大赛-供水管网压力预测-排名106-6.45分

任务通过某新区供水管网的历史压力数据、天气数据和供水管网互通图,预测未来某时间点的压力数据。数据主办方提供某新区供水管网数据,数据划分如下:训练集:2018至2019年的30个压力监测点近两年的压力数据、2018年至2019年的天气数据,以及标明了30个压力监测点位置的供水管网互通图。测试集:以下4段时间的每小时的压力数据、每天的天气数据,需要分别去预测对应日期每小时的压力数据。具体数据字段描述如下:(1)压力数据(2)气象数据总体思路如下:把原本为列名的小时改成Hour字段,

2021-02-07 15:19:52 1217 6

原创 2021美赛建模ICM_Problem _D题音乐思路与代码

2021ICM D 题:音乐的影响我们的目标是了解和衡量之前制作的音乐对新音乐和音乐艺术家的影响。这里的之前制作的音乐是某艺术家之前制作的还是历史所有的音乐暂未表明,所以可能需要大家选择其中一个角度去建模,注意目标是量化对新音乐、音乐艺术家(两个目标,两个模型)的影响分析:题目中明确指出需要量化音乐,影响因素给出了天生的创造力,当前的社会或政治事件,使用新乐器或工具,或其他个人经历。在建模时,除给出的因素外,应当考虑其他因素,比如共用几种乐器,音乐人的年龄,音乐人的社会地位和在领域内的地位,艺术家所

2021-02-06 23:10:48 4378 6

原创 航空发动机寿命预测

航空发动机寿命预测该数据集的挑战在于,数据来自50或60米的气象塔的数据。 每个塔都有多个风速计,一个风向标和一个温度传感器。 每个传感器在10分钟内测量数据并报告10分钟内的平均值,标 准偏差,最小值和最大值。 通常情况下,最高两级有一对风速计(例如60米高的59米和49米),然后是30米和/或10米的单个或配对风速计。a)训练数据集提供的数据文件中有两个结构,第一个是“Train_EngineRun”。这包含结构内的260个发动机。在每个结构中,该引擎的生命周期数据,从新引擎直到退役。数据包含24

2020-12-25 22:07:17 4597 15

SinGAN_图片生成简版.zip

SinGAN_图片生成简版,只包含图片生成的代码,相比GitHub的代码更小更简洁更容易看懂,许多代码我都加了注释

2021-10-09

QMNIST.zip手写数据集

QMNIST.zip手写数据集

2021-08-05

KMNIST.zip手写数据集

KMNIST.zip手写数据集

2021-08-05

python_pyecharts画三维折线图1.csv

python_pyecharts画三维折线图 测试数据

2021-08-04

ChinaChess.rar

python Pygame alpha-beta剪枝算法 玩中国象棋 相当于入门水平

2021-03-14

DQN_point_game.rar

强化学习算法DQN玩五子棋

2021-03-14

jinjie02julei.ipynb

我们的目标是**了解和衡量之前制作的音乐对新音乐和音乐艺术家的影响。** 这里的之前制作的音乐是某艺术家之前制作的还是历史所有的音乐暂未表明,所以可能需要大家选择其中一个角度去建模,注意目标是量化对新音乐、音乐艺术家(两个目标,两个模型)的影响 分析:题目中明确指出需要量化音乐,影响因素给出了天生的创造力,当前的社会或政治事件, 使用新乐器或工具,或其他个人经历。在建模时,除给出的因素外,应当考虑其他因素,**比如共用几种乐器,音乐人的年龄,音乐人的社会地位和在领域内的地位,艺术家所属领域的热门程度等。**

2021-02-06

2021美赛建模ICM_Problem _D题音乐代码1

我们的目标是**了解和衡量之前制作的音乐对新音乐和音乐艺术家的影响。** 这里的之前制作的音乐是某艺术家之前制作的还是历史所有的音乐暂未表明,所以可能需要大家选择其中一个角度去建模,注意目标是量化对新音乐、音乐艺术家(两个目标,两个模型)的影响 分析:题目中明确指出需要量化音乐,影响因素给出了天生的创造力,当前的社会或政治事件, 使用新乐器或工具,或其他个人经历。在建模时,除给出的因素外,应当考虑其他因素,**比如共用几种乐器,音乐人的年龄,音乐人的社会地位和在领域内的地位,艺术家所属领域的热门程度等。**

2021-02-06

CNC机床刀具寿命预测数据集

通过在一台高速CNC机床上安装测力计、三个轴向上的振动传感器、声音传感器,设置工艺参数为:主轴转速10400 RPM, 进给率为1555 mm/min, 横向切深为0.125mm, 纵向切深为 0.2mm.采样率为50KHz进行实验。经由数采板卡,采集包含:X轴切削力、Y轴切削力、Z轴切削力、X轴振动、Y轴振动、Z轴振动、声音信号RMS、声音信号这8个数据项。每次切削循环后的刀具磨损量也以10^-3mm为单位进行记录。分析者将利用这些数据预测6mm球鼻碳化钨钢刀的剩余寿命。

2020-12-25

航空发动机寿命预测训练和预测数据

该数据集的挑战在于,数据来自50或60米的气象塔的数据。 每个塔都有多个风速计,一个风向标和一个温度传感器。 每个传感器在10分钟内测量数据并报告10分钟内的平均值,标 准偏差,最小值和最大值。 通常情况下,最高两级有一对风速计(例如60米高的59米和49米),然后是30米和/或10米的单个或配对风速计。 a)训练数据集 提供的数据文件中有两个结构,第一个是“Train_EngineRun”。这包含结构内的260个发动机。在每个结构中,该引擎的生命周期数据,从新引擎直到退役。数据包含24列,每行对应一个给定的航班。每次飞行数据都采集自六种飞行状态中的一种,飞行状态标签也有提供。

2020-12-25

大数据时代的Serverless工作负载预测-特征工程后的数据

大数据时代的Serverless工作负载预测-特征工程后的数据 76M 下载有点慢 难度与挑战: 1.模型的准确性。模型的度量指标; 2.模型的抗干扰能力。能应对异常数据的干扰; 3.模型的通用性。不依靠堆叠模型提升效果。 出题单位:华为

2020-11-16

电机故障诊断.rar

电机故障诊断数据介绍: 数据描述训练数据包含3个不同机械的运行数据,数据已经经过脱敏处理。数据中包含一个电机故障,发生在3号机器。 数据包含如下信息: temp_drv:发电机轴承驱动端温度 temp_nondrv:发电机轴承非驱动端温度 wind_speed:环境风速 wind_dir:环境风向 env_temp:环境温度 power_W:电机有功功率 time:时间 wtid:机器编号

2020-11-05

初赛2月份25.4分-提交结果文件-submission.csv

第四届工业大数据创新竞赛-水电站入库流量预测 成绩排名: 初赛线上第一段2月份25.4分,第二段最高分10.0分,第三段不好意思说,可看文章末尾我的提交结果记录,第一次9月8号提交第六名,当时开心的要死,之后排名一路下降,大佬们太强了

2020-11-02

水电站入库流量预测-初赛2月份25.4分.zip

第四届工业大数据创新竞赛-水电站入库流量预测 成绩排名: 初赛线上第一段2月份25.4分,第二段最高分10.0分

2020-11-02

数据挖掘工程师小测试

超级码力机器学习岗位 选拔笔试 第一题: 1.用一个你觉得效果最好的分类算法(e.g., SVM,RF,ANN,etc.)对Test1的data进行classification建模,用5-fold crossvalidation来计算预测的AUC或F-measure。若电脑计算能力不足可用3-fold。对于有些本身就含有cross validation功能的算法可以不用cross validation来稳定结果。(PS,对于非计算机系的同学,以python或R为例,各种分类算法以及AUC的计算都可以在网上找到对应参考代码。)

2020-08-30

算法测试题(三态)(3).rar

三态电子商务公司算法岗面试_使用逻辑回归预测宾馆下单的概率 问题描述:房间共享公司(如Airbnb)希望帮助客房供应商 他们的房间价格合理。其中一个关键步骤是建立一个模型来预测 在一定条件下,一个房间的购买概率(由某些特征和日期描述)

2020-08-30

login.html

<label for="phone">手机号</label> <input type="text" class="form-control" id="phone" placeholder="手机号" onblur="checkPhone()"> <div id="test_phone"></div> </div><!--/.form-group --> <div class="form-group"> <label for="password">密码</label> <input type="password" class="form-control" id="password" placeholder="密码" onblur="validate_password(this.value)"> <div id="test_pw"></div>

2020-04-15

sparkPostgresRest-master.zip

sparkPostgresRest-master.zip sparkPostgresRest-master\src\main\scala\com\spark\DateChanger.scala sparkPostgresRest-master\src\main\scala\com\spark\JDBCConnector.scala

2020-04-15

read_write.py

python读写txt、csv、json文件大全的工具方法 写txt文件,写一行就换行,追加方式写txt文件,写一行就换行,追加方式 写CSV文件,写一行就换行,追加方式 写json文件,写一行就换行,追加方式 写json文件,一个数据一个文件 遍历文件夹中的所有文件

2020-02-26

mendeleydesktop_1.19.4-stable_amd64.deb

mendeley 是一款免费的文献管理软件,有一键抓取网页上的文本添加到个人library中的功能,安装插件后还可以编辑文本。

2019-06-29

deepin.com.qq.im_8.9.19983deepin23_i386.deb

Ubuntu安装wine后可安装deepin qq,实现Ubuntu中使用qq,具体操作方法请看: https://www.cnblogs.com/dudujerry/p/9763518.html

2019-06-29

edgetpu_api.tar.gz

该模型是Edge TPU运行时的Python库,可在TPU内直接运行,具体可执行代码请看:https://github.com/JackonLiu/TensorflowLite_TPU

2019-06-29

models.tar.gz

已经预训练的TensorflowLite模型文件,能够在edgeTPU上直接调用运行,里面包括model和标签。 样例文件名:mobilenet_ssd_v2_face_quant_postproce.tflite pet_labels.txt

2019-06-29

resnet50_weights_tf_dim_ordering_tf_kernels.h5

resnet50_weights_tf_dim_ordering_tf_kernels.h5 速度快,准确率高,参数不多

2017-12-17

tensorflow-resnet-master.zip

tensorflow-resnet-master.zip 非常高的准确率,非常好的神经网络

2017-12-16

mobile_net.py

mobile_net.py 最适合编译在Android上的神经网络 速度快准确率高

2017-12-16

DenseNet-40-12-Tensorflow-Backend-TF-dim-ordering.h5

DenseNet-40-12-Tensorflow-Backend-TF-dim-ordering.h5 训练完imagenet的权重文件,用此转移学习

2017-12-16

DenseNet-Fast-40-12-CIFAR10.h5

DenseNet-Fast-40-12-CIFAR10.h5 准确率高达93% 可用此直接发布到heroku上

2017-12-16

wrn广泛残余网络的源代码

广泛残余网络的源码,深度学习的标配,可以用此进行转移学习!

2017-12-16

WRN-CIFAR100-16-4-Best.h5

WRN-CIFAR100-16-4-Best.h5 广泛残余网络的cifar100的权重,可以用此权重预训练!

2017-12-16

WRN-CIFAR10-16-4-Best.h5

WRN-CIFAR10-16-4-Best.h5 wrn是广泛的残余网络,比resnet更快更好!

2017-12-16

densenet169_weights_tf.h5

densenet169_weights_tf.h5 top1准确率达到77% top5 93%

2017-12-15

minst识别手写数字上传至heroku服务器

minst识别手写数字上传至heroku服务器 heroku是优秀的直接展示应用程序在云平台的网站

2017-12-14

神经网络ror resenet模型

神经网络ror resenet模型 cifar10准确率89% cifar100准确率72%

2017-12-14

DenseNet-2.0.zip 17年冠军模型

DenseNet-2.0.zip 17年冠军模型 top1 77% top5 93%

2017-12-14

获取电脑内存 cpu 等硬件信息

获取电脑内存 cpu ssd 显卡 等硬件信息 堪比鲁大师!

2017-12-14

heroku-windows-amd64.exe 直接发布应用程序到服务器的免费网站

heroku-windows-amd64.exe 直接发布应用程序到服务器的免费网站 详情请访问 https://devcenter.heroku.com/articles/getting-started-with-java#set-up

2017-12-14

densenet121_weights_tf.h5 最好的深度学习网络的权重

densenet121_weights_tf.h5 最好的深度学习网络的权重 代码在github上可以找到!

2017-12-14

cifar10vgg

cifar10vgg.h5是cifar10由vgg16卷积神经网络跑通的权重文件,可用此文件进行转移学习,该代码在我的下载上面可以下载! http://download.csdn.net/download/qq_30803353/10158299

2017-12-14

vgg_cifar10.py

vgg_cifar10.py是非常优秀的深度学习卷积神经网络1 cifar10准确率达到了89%。权重文件可在我的下载中找到! 链接:http://download.csdn.net/download/qq_30803353/10158302

2017-12-14

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除