灰狼算法优化LSTM超参数-神经元个数-dropout-batch_size

本文介绍了如何利用灰狼优化算法(GWO)来寻找LSTM神经网络的最佳超参数,包括神经元数量、dropout比率和batch_size。通过迭代寻优,GWO模拟灰狼的狩猎行为以逼近全局最优解。代码中展示了GWO的实现过程,并给出了实际数据集(zgpa_train.csv和DIANCHI.csv)的预处理和模型训练。最终,使用找到的最优参数训练LSTM模型并评估性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、摘要

本文主要讲解:使用灰狼算法优化LSTM超参数-神经元个数-dropout-batch_size
主要思路:

  1. 灰狼算法 Parameters : 迭代次数、狼的寻值范围、狼的数量
  2. LSTM Parameters 神经网络第一层神经元个数、神经网络第二层神经元个数、dropout比率、batch_size
  3. 开始搜索:初始化所有狼的位置、迭代寻优、返回超出搜索空间边界的搜索代理、计算每个搜索代理的目标函数、更新 Alpha, Beta, and Delta
  4. 训练模型,使用灰狼算法找到的最好的全局最优参数
  5. plt.show()

2、数据介绍

zgpa_train.csv
DIANCHI.csv

需要数据的话去我其他文章的评论区
可接受定制

3、相关技术

灰狼优化算法(GWO),灵感来自于灰狼.GWO算法模拟了自然界灰狼的领导层级和狩猎机制.四种类型的灰狼。此外,还实现了狩猎的三个主要步骤:寻找猎物、包围猎物和攻击猎物。
在这里插入图片描述

PSO与GWO对比试验结果如下图:图5 PSO与GWO对比试验结果
灰狼算法

4、完整代码和步骤

此程序运行代码版本为:

tensorflow==2.5.0
numpy==1.19.5
keras==2.6.0
matplotlib==3.5.2

代码输出如下:
在这里插入图片描述

主运行程序入口
LSTM_GWO.py

import math
import os
import random

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from tensorflow.python.keras.callbacks import EarlyStopping
from tensorflow.python.keras.layers import Dense, Dropout, LSTM
from tensorflow.python.keras.layers.core import Activation
from tensorflow.python.keras.models import Sequential
import numpy as numpy

os.chdir(r'D:\项目\PSO-LSTM\具体需求')
'''
灰狼算法优化LSTM
'''
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号


def GWO(objf, lb, ub, dim, SearchAgents_no, Max_iter):
    # ===初始化 alpha, beta, and delta_pos=======
    Alpha_pos = numpy.zeros(dim)  # 位置.形成30的列表
    Alpha_score = float("inf")  # 这个是表示“正负无穷”,所有数都比 +inf 小;正无穷:float("inf"); 负无穷:float("-inf")

    Beta_pos = numpy.zeros(dim)
    Beta_score = float("inf")

    Delta_pos = numpy.zeros(dim)
    Delta_score = float("inf")  # float() 函数用于将整数和字符串转换成浮点数。

    # ====list列表类型=============
    if not isinstance(lb, list):  # 作用:来判断一个对象是否是一个已知的类型。其第一个参数(object)为对象,第二个参数(type)为类型名,若对象的类型与参数二的类型相同则返回True
        lb = [lb] * dim  # 生成[100,100,.....100]30个
    if not isinstance(ub, list):
        ub = [ub] * dim

    # ========初始化所有狼的位置===================
    Positions = numpy.zeros((SearchAgents_no, dim))
    for i in range(dim):  # 形成5*30个数[-100,100)以内
        Positions[:, i] = numpy.random.uniform(0, 1, SearchAgents_no) * (ub[i] - lb[i]) + lb[
            i]  # 形成[5个0-1的数]*100-(-100)-100
    Convergence_curve = numpy.zeros(Max_iter)

    # ========迭代寻优=====================
    for l in range(0, Max_iter):  # 迭代1000
        for i in range(0, SearchAgents_no):  # 5
            # ====返回超出搜索空间边界的搜索代理====
            for j in range(dim):  # 30
                Positions[i, j] = numpy.clip(Positions[i, j], lb[j], ub[
                    j])  # clip这个函数将将数组中的元素限制在a_min(-100), a_max(100)之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_min。

            # ===计算每个搜索代理的目标函数==========
            fitness = objf(Positions[i, :])  # 把某行数据带入函数计算
            # print("经过计算得到:",fitness)

            # ====更新 Alpha, Beta, and Delta================
            if fitness < Alpha_score:
                Alpha_score = fitness  # Update alpha
                Alpha_pos = Positions[i, :].copy()

            if (fitness > Alpha_score and fitness < Beta_score):
                Beta_score = fitness  # Update beta
                Beta_pos = Positions[i, :].copy()

            if (fitness > Alpha_score and fitness > Beta_score and fitness < Delta_score):
                Delta_score = fitness  # Update delta
                Delta_pos = Positions[i, :].copy()

        # ===========以上的循环里,Alpha、Beta、Delta===========
        a = 2 - l * ((2) / Max_iter)  # a从2线性减少到0

        for i in range(0, SearchAgents_no):
            for j in range(0, dim):
                r1 = random.random()  # r1 is a random number in [0,1]主要生成一个0-1的随机浮点数。
                r2 = random.random()  # r2 is a random number in [0,1]

                A1 = 2 * a * r1 - a  # Equation (3.3)
                C1 = 2 * r2  # Equation (3.4)
                # D_alpha表示候选狼与Alpha狼的距离
                D_alpha = abs(C1 * Alpha_pos[j] - Positions[
                    i, j])  # abs() 函数返回数字的绝对值。Alpha_pos[j]表示Alpha位置,Positions[i,j])候选灰狼所在位置
                X1 = Alpha_pos[j] - A1 * D_alpha  # X1表示根据alpha得出的下一代灰狼位置向量

                r1 = random.random()
                r2 = random.random()

                A2 = 2 * a * r1 - a  #
                C2 = 2 * r2

                D_beta = abs(C2 * Beta_pos[j] - Positions[i, j])
                X2 = Beta_pos[j] - A2 * D_beta

                r1 = random.random()
                r2 = random.random()

                A3 = 2 * a * r1 - a
                C3 = 2 * r2

                D_delta = abs(C3 * Delta_pos[j] - Positions[i, j])
                X3 = Delta_pos[j] - A3 * D_delta

                Positions[i, j] = (X1 + X2 + X3) / 3  # 候选狼的位置更新为根据Alpha、Beta、Delta得出的下一代灰狼地址。

        Convergence_curve[l] = Alpha_score

        if (l % 1 == 0):
            print(['迭代次数为' + str(l) + ' 的迭代结果' + str(Alpha_score)])  # 每一次的迭代结果
    # 绘图
    plt.plot(Convergence_curve)
    plt.title('Convergence_curve')
    plt.show()

    print("The best solution obtained by GWO is : " + str(Alpha_pos))
    print("The best optimal value of the objective funciton found by GWO is : " + str(Alpha_score))
    return Alpha_pos,Alpha_score


def creat_dataset(dataset, look_back):
    dataX, dataY = [], []
    for i in range(len(dataset) - look_back - 1):
        a = dataset[i: (i + look_back)]
        dataX.append(a)
        dataY.append(dataset[i + look_back])
    return np.array(dataX), np.array(dataY)


dataframe = pd.read_csv('zgpa_train.csv', header=0, parse_dates=[0], index_col=0, usecols=[0, 5], squeeze=True)
dataset = dataframe.values
data = pd.read_csv('DIANCHI.csv', header=0)
z = data['fazhi']

scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset.reshape(-1, 1))

train_size = int(len(dataset) * 0.8)
test_size = len(dataset) - train_size
train, test = dataset[0: train_size], dataset[train_size: len(dataset)]
look_back = 10
trainX, trainY = creat_dataset(train, look_back)
testX, testY = creat_dataset(test, look_back)


def build_model(neurons1, neurons2, dropout):
    X_train, y_train = trainX, trainY
    X_test, y_test = testX, testY
    model = Sequential()

    # model.add(LSTM(input_dim=1, units=50, return_sequences=True))
    model.add(LSTM(input_dim=neurons1, units=50, return_sequences=True, input_shape=(10, 1)))

    # model.add(LSTM(input_dim=50, units=100, return_sequences=True))
    model.add(LSTM(input_dim=neurons2, units=100, return_sequences=True))

    model.add(LSTM(input_dim=100, units=200, return_sequences=True))
    model.add(LSTM(300, return_sequences=False))

    # model.add(Dropout(0.2))
    model.add(Dropout(dropout))

    model.add(Dense(100))
    model.add(Dense(units=1))
    model.add(Activation('relu'))
    model.compile(loss='mean_squared_error', optimizer='Adam')
    return model, X_train, y_train, X_test, y_test


def training(X):
    neurons1 = int(X[0])
    neurons2 = int(X[1])
    dropout = round(X[2], 6)
    batch_size = int(X[3])
    print(X)
    model, X_train, y_train, X_test, y_test = build_model(neurons1, neurons2, dropout)
    model.fit(
        X_train,
        y_train,
        batch_size=batch_size,
        epochs=1,
        validation_split=0.1,
        verbose=0,
        callbacks=[EarlyStopping(monitor='val_loss', patience=22, restore_best_weights=True)])

    pred = model.predict(X_test)
    temp_mse = mean_squared_error(y_test, pred)
    print(temp_mse)
    return temp_mse


if __name__ == '__main__':
    '''
    神经网络第一层神经元个数
    神经网络第二层神经元个数
    dropout比率
    batch_size
    '''
    ub = [10, 26, 0.25, 8]
    lb = [6, 22, 0.2, 2]

    # ===========主程序================
    Max_iter = 3  # 迭代次数
    dim = 4  # 狼的寻值范围
    SearchAgents_no = 5  # 寻值的狼的数量
    Alpha_pos,Alpha_score = GWO(training, lb, ub, dim, SearchAgents_no, Max_iter)

    print('best_params is ', Alpha_pos)
    print('best_precision is', Alpha_score)

    # 训练模型  使用PSO找到的最好的神经元个数
    neurons1 = int(Alpha_pos[0])
    neurons2 = int(Alpha_pos[1])
    dropout = Alpha_pos[2]
    batch_size = int(Alpha_pos[3])
    model, X_train, y_train, X_test, y_test = build_model(neurons1, neurons2, dropout)
    history = model.fit(X_train, y_train, epochs=333, batch_size=batch_size, validation_split=0.2, verbose=1,
                        callbacks=[EarlyStopping(monitor='val_loss', patience=29, restore_best_weights=True)])
    trainPredict = model.predict(trainX)
    testPredict = model.predict(testX)
    trainPredict = scaler.inverse_transform(trainPredict)
    trainY = scaler.inverse_transform(trainY)
    testPredict = scaler.inverse_transform(testPredict)
    testY = scaler.inverse_transform(testY)

    trainScore = math.sqrt(mean_squared_error(trainY, trainPredict[:, 0]))
    # print('Train Score %.2f RMSE' %(trainScore))
    testScore = math.sqrt(mean_squared_error(testY, testPredict[:, 0]))
    # print('Test Score %.2f RMSE' %(trainScore))

    trainPredictPlot = np.empty_like(dataset)
    trainPredictPlot[:] = np.nan
    trainPredictPlot = np.reshape(trainPredictPlot, (dataset.shape[0], 1))
    trainPredictPlot[look_back: len(trainPredict) + look_back, :] = trainPredict

    testPredictPlot = np.empty_like(dataset)
    testPredictPlot[:] = np.nan
    testPredictPlot = np.reshape(testPredictPlot, (dataset.shape[0], 1))
    testPredictPlot[len(trainPredict) + (look_back * 2) + 1: len(dataset) - 1, :] = testPredict

    plt.plot(history.history['loss'])
    plt.title('model loss')
    plt.ylabel('loss')
    plt.xlabel('epoch')
    plt.show()

    fig2 = plt.figure(figsize=(20, 15))
    plt.rcParams['font.family'] = ['STFangsong']
    ax = plt.subplot(222)
    plt.plot(scaler.inverse_transform(dataset), 'b-', label='实验数据')
    plt.plot(trainPredictPlot, 'r', label='训练数据')
    plt.plot(testPredictPlot, 'g', label='预测数据')
    plt.plot(z, 'k-', label='寿命阀值RUL')
    plt.ylabel('capacity', fontsize=20)
    plt.xlabel('cycle', fontsize=20)
    plt.legend()
    name = 'neurons1_' + str(neurons1) + 'neurons2_' + str(neurons2) + '_dropout' + str(
        dropout) + '_batch_size' + str(batch_size)
    plt.savefig('D:\项目\PSO-LSTM\具体需求\photo\\' + name + '.png')
    plt.show()

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值