【翻译】ON THE REPRESENTATION OF CONTINUOUS FUNCTIONS OF SEVERAL VARIABLES AS SUPERPOSITIONS OF CONTINU

这里是 kolmogorov选集[MM]mathematics and mechanics中的第55篇。
个人学习使用,翻译错误可能较多望不吝指出

Theorem 3, stated below, implies the following somewhat unexpected conse- 
quence: any continuous function of an arbitrarily large number of variables is 
representable as a finite superposition of continuous functions of at most three 
va riables. For an arbitrary function of four variables the representation has the 
form 4 l(xl,x2,X3,X4) = Eh r [X4,gr(Xl,X2,X3),g2(Xl,X2,X3)]. r=l 

定理3,如下所述,这意味着以下有些出乎意料的结果:任意多变量的连续函数都可以表示为至多三个变量的有限叠加(这里的叠加从形式上看包括嵌套和基本运算[译者]),对于四个变量的任意函数,这种表示具有以下形式。
f ( x 1 , x 2 , x 3 , x 4 ) = ∑ r = 1 4 [ x 4 , g 1 r ( x 1 , x 2 , x 3 ) , g 2 r ( x 1 , x 2 , x 3 ) ] f(x_1,x_2,x_3,x_4) = \sum ^{4} _{r=1}[x_4,g^r_1(x_1,x_2,x_3),g_2^r(x_1,x_2,x_3)] f(x1,x2,x3,x4)=r=14[x4,g1r(x1,x2,x3),g2r(x1,x2,x3)]

The question whether an arbitrary continuous function of three variables 
can be represented as a superposition of continuous functions of two variables 
remains open. The proof of the possibility of such a representation would give 
the complete solution to Hilbert's 13th problem [1], in the sense of a refutation 
of the conjecture put forward by Hilbert. Theorem 2 only shows that the 
representation of an arbitrary continuous function of three variables in the 
form of a superposition of continuous functions of two variables is possible if 
we admit as auxiliary variables some variables running over a one-dimensional 
formation somewhat more complicated than a closed interval on the number 
line, namely a universal tree (by a tree is meant a locally connected continuum 
not containing a homeomorphic image of a circle; as was shown by Menger 
[2], there exists a universal tree B containing homeomorphic images of all the 
trees) . 

任意三个变量的连续函数是否可以表示为两个变量的连续函数的叠加的问题仍然悬而未决。从反驳希尔伯特提出的猜想的意义上说,证明这种表示的可能性将给出希尔伯特第 13 个问题 [1] 的完整解决方案。定理2仅表示,如果我们我们要求一些辅助变量存在于一个比数轴上闭区间更复杂的一维结构上,及通用树 Ξ \Xi Ξ(这里的树是一个不包括圆的同胚图像的局部相连的连续体,如 Menger[2]所示,存在包含所有树的同胚图像的通用树),则任意三变量连续函数以二变量连续函数叠加的形式表示是可能的(这句话的翻译比较有难度,本想借助引文[2]来进行理解但是并没有能力找到原文只有封面如下有条件的小伙伴可以自行寻找[译者])
————上面承接主题翻译,下面是支线
在这里插入图片描述
更新23.1.19:相关页面:
请添加图片描述请添加图片描述请添加图片描述请添加图片描述
请添加图片描述
毕竟是德语,相关的翻译再做补充+_+
更新:23.2.1
补充:
在kurventheorie 中的第10章第1节中的注解中有提到树曲线的定义和相关的概念的引用

Literatur. Der Begriff der Baumkurve: Mazurkiewicz (Fund. Math. 2, 1921, 
S. 123). Erblicher Zusammenhang im Kleinen der Baumkurven: Ważewski (Ann.
Soc. Polon. Math. 2, 1924, S. 83), Scherrer (Math. Ztschr. 24, 1926, S.127). Regu-
larität der Baumkurven: Menger (Math. Ann. 96, 1927, S. 573). In der amerika-
nischen Literatur werden Baumkurven meist als acyclic continuous curves bezeichnet, 
im Französischen als dendrite. 

文学。树曲线的概念:Mazurkiewicz(Fund.Math.2,1921,第123页)。小树曲线的遗传关系:Wazewski(Ann.Soc.Polon.Math.2,1924,第83页),Scherrer(Math.Ztschr.24,1926,第127页)。树曲线的正则性:Menger(Math Ann.96,1927,p.573)。在美国文学中,树形曲线通常被称为无环连续曲线,在法语中被称为树枝。
————下面承接主题翻译,支线收起

In what follows k, m, nand ,. are natural numbers; a, b, c, C, d, M, R, x, y, 
u, v, I, F, g, h, f, 6 and p are real numbers; , <p and 1/J are tree elements; En is 
the n-dimensional unit cube; 0 < Xi < 1; i = 1, . . . , n. 

在下面之中 k , m , n , r k,m,n,r k,m,n,r都是自然数; a , b , c , C , d , M , R , x , y , u , v , f , F , g , h , ϵ , δ , ρ a, b, c, C, d, M, R, x, y,u, v, f, F, g, h, \epsilon, \delta , \rho a,b,c,C,d,M,R,x,y,u,v,f,F,g,h,ϵ,δ,ρ都是实数; ξ , ϕ , ψ \xi,\phi,\psi ξ,ϕ,ψ都是树元素; E n E^n En是n维单位立方体; 0 ≤ x i ≤ 1 ; i = 1 , . . . , n 0 \leq x_i \leq1; i=1,...,n 0xi1;i=1,...,n

Theorem 1. a) For any n > 2 there are continuous functions 
<pi,..., <pn+l 
on En with values belonging to the universal tree B such that any continuous 
real function 1 on En can be represented as 
n+l 
I(xl'...' x n ) = E hj[<p r (Xl,..., x n )], 
where hi () are continuous real functions on s. 
b) The functions hi () can be chosen so that they depend continuously on 1 
in the sense of the topology of uniform convergence in the spaces of continuous 
functions on En and S. 
Theorem 1 implies almost immediately 

定理 1.
\quad a) 对于每一个 n ≥ 2 n \geq2 n2定义在 E n E^n En上的连续函数簇
ϕ 1 , . . . , ϕ n + 1 \phi^1,...,\phi^{n+1} ϕ1,...,ϕn+1
的值属于通用树 Ξ \Xi Ξ(是先有连续函数定义在 E n E^n En上,但是我怀疑后面的可能性会超过这个 R n R^n Rn的表达范围[译者])这样,在 E n E^n En上定义的任意连续实函数有如下表式:
f ( x 1 , . . . , x n ) = ∑ r = 1 n + 1 h f s [ ϕ r ( x 1 , . . . , x n ) ] f(x_1,...,x_n)=\sum^{n+1}_{r=1}h^s_f[\phi^r(x_1,...,x_n)] f(x1,...,xn)=r=1n+1hfs[ϕr(x1,...,xn)]
这里的 h j r ( ξ ) h^r_j(\xi) hjr(ξ)是在 Ξ \Xi Ξ上的连续实函数
\quad b)从 E n E^n En Ξ \Xi Ξ中连续函数空间上的拓扑性和一致收敛性上说,我们可以选择函数 h j r ( ξ ) h_j^r(\xi) hjr(ξ)使得他们的连续性取决于 f f f(这句话斟酌了许久感觉翻译的有问题,还是看原文吧[译者])
\quad 从定理一中显然可以得出:

Theorem 2. For any n > 3 there are continuous functions 
4Jl , . . . , 4Jn 
on En with values belonging to S such that any continuous function 1 on En 
can be represented in the form 
n 
I(Xl,. .. , x n ) = E hr[xn, 4Jr(Xl' ... , X n -l)], 
r=1 
where hr(x,) are continuous real functions on the product E 1 X S. 
The universal tree S can be regarded (see [2]) as having a realization as a 
continuum in the unit square E 2 . Denoting by 91 and 92 the coordinates of the 
point 4Jr, we obtain as an immediate consequence of Theorem 2 the following 
proposition: 

定理2
\quad a) 对于每一个 n ≥ 3 n \geq3 n3定义在 E n E^n En上的连续函数簇
ϕ 1 , . . . , ϕ n + 1 \phi^1,...,\phi^{n+1} ϕ1,...,ϕn+1
的值属于通用树 Ξ \Xi Ξ,在 E n E^n En上定义的任意连续函数有如下形式:
f ( x 1 , . . . , x n ) = ∑ r = 1 n h r [ x n , ϕ r ( x 1 , . . . , x n − 1 ) ] f(x_1,...,x_n)=\sum^{n}_{r=1}h^r[x_n,\phi^r(x_1,...,x_{n-1})] f(x1,...,xn)=r=1nhr[xn,ϕr(x1,...,xn1)]
这里的 h r ( x , ξ ) h^r(x,\xi) hr(x,ξ)是定义在 E 1 × Ξ E^1\times\Xi E1×Ξ上的连续实函数

The universal tree S can be regarded (see [2]) as having a realization as a 
continuum in the unit square E 2 . Denoting by 91 and 92 the coordinates of the 
point 4Jr, we obtain as an immediate consequence of Theorem 2 the following 
proposition: 

通用树 Ξ \Xi Ξ可以看成(见[2])在 E 2 E^2 E2中的连续单位正方形。(翻译有问题)用 g 1 r , g 2 r g_1^r,g_2^r g1r,g2r表示点 ϕ r \phi^r ϕr,作为定理2的直接推论,我们可以得到以下命题:

Theorem 3. For any n > 3 there are continuous real functions 
1 n. 1 n 
91,...,91,92'.. .,92 
on E n - 1 such that any continuous function 1 on En can be represented in the 
form 
n 
I(Xl,... ,x n ) = E h r [X n ,9r(Xl,..., xn-l),9(Xl,... ,X n -l)], 
r=1 
where h r are continuous functions on E 3 . 
Theorem 3 is trivial for n = 3; it is of actual interest only for n > 4. 
It remains to indicate briefly a way of proving Theorem 1. The proof 
proceeds from the following lemma. 
Main lemma. For any n > 2 there is a system of functions 
Ukm(Xl,...,X n ) 
Theorem 3. For any n > 3 there are continuous real functions 
1 n. 1 n 
91,...,91,92'.. .,92 
on E n - 1 such that any continuous function 1 on En can be represented in the 
form 
n 
I(Xl,... ,x n ) = E h r [X n ,9r(Xl,..., xn-l),9(Xl,... ,X n -l)], 
r=1 
where h r are continuous functions on E 3 . 
Theorem 3 is trivial for n = 3; it is of actual interest only for n > 4. 
It remains to indicate briefly a way of proving Theorem 1. The proof 
proceeds from the following lemma. 
Main lemma. For any n > 2 there is a system of functions 
Ukm(Xl,...,X n ) 
Theorem 3. For any n > 3 there are continuous real functions 
1 n. 1 n 
91,...,91,92'.. .,92 
on E n - 1 such that any continuous function 1 on En can be represented in the 
form 
n 
I(Xl,... ,x n ) = E h r [X n ,9r(Xl,..., xn-l),9(Xl,... ,X n -l)], 
r=1 
where h r are continuous functions on E 3 . 
Theorem 3 is trivial for n = 3; it is of actual interest only for n > 4. 
It remains to indicate briefly a way of proving Theorem 1. The proof 
proceeds from the following lemma. 
Main lemma. For any n > 2 there is a system of functions 
Ukm(Xl,...,X n ) 
It can easily be verified that 
fr(P) = hr[q'>r(p)]. 
(3) 
Formulas (2) and (3) lead to a proof of assertion a) of Theorem 1. Assertion 
b) of Theorem 1 is proved on the basis of assertion b) of Lemma 1. 
In conclusion we also state without proof the following proposition. 

定理3: ∀ n ≥ 2   ∃ \forall n \geq 2\ \exists n2 一个定义在 E n E^n En函数系统
u k m r ( x 1 , . . . , x n ) u^r_{km}(x_1,...,x_n) ukmr(x1,...,xn)
其中r,k,m,有如下定义:
1 ≤ r ≤ n + 1 , 1 ≤ k ≤ ∞ , 1 ≤ m ≤ m k , 1\leq r\leq n+1,1\leq k \leq \infty,1\leq m \leq m_k, 1rn+1,1k,1mmk,
有以下特性:
1) u k m r ≥ 0 u^r_{km}\geq 0 ukmr0;
2) u k m r ≠ 0 u^r_{km} \neq 0 ukmr=0仅存在于当 d k → 0 , k → ∞ 时 d k 的集合 G k m r 中 d_k \rightarrow 0,k\rightarrow \infty时 d_k的集合G^r_{km}中 dk0,kdk的集合Gkmr
ps:从这里将中文写到tex公式里,字体和自动换行受到影响
3 ) 当两个集合 G k m r 和 G k m ′ r 的参数 r 和 k 相同且 m ′ ≠ m 时是不相交的 3)当两个集合G^r_{km}和G^r_{km^{\prime}}的参数r和k相同且 m^{\prime} \neq m时是不相交的 3)当两个集合GkmrGkmr的参数rk相同且m=m时是不相交的
4 ) ∀ P ∈ E n 对于 ∀ k 有 4)\forall P\in E^n对于\forall k有 4)PEn对于k
c ≤ ∑ r = 1 n + 1 ∑ m = 1 m k u k m r ≤ C , c \leq \sum^{n+1}_{r=1}\sum^{m_k}_{m=1}u^r_{km} \leq C, cr=1n+1m=1mkukmrC,
5 ) 函数 u k m r 在每个集合 G k ′ m ′ r 上是常数,对于 k ′ > k 和任意 m ′ 具有相同的上标 r 。 5)函数u^r_{km}在每个集合G^r_{k^{\prime}m^{\prime}}上是常数,对于 k' > k 和任意 m' 具有相同的上标 r。 5)函数ukmr在每个集合Gkmr上是常数,对于k>k和任意m具有相同的上标r
系统的结构函数 u k m r 不能在本文的框架中被介绍。在接下来的内容中这种系统函数假设已经被给出 系统的结构函数u^r_{km}不能在本文的框架中被介绍。在接下来的内容中这种系统函数假设已经被给出 系统的结构函数ukmr不能在本文的框架中被介绍。在接下来的内容中这种系统函数假设已经被给出

引理1. a ) E n 上的任意连续函数 f 可以表示为 \textbf{引理1.} a)E^n上的任意连续函数f可以表示为 引理1.a)En上的任意连续函数f可以表示为
f ( P ) = ∑ k = 1 ∞ ∑ r = 1 n + 1 ∑ m = 1 m k a k m r ( f ) u k m r ( P )   (1) f(P)=\sum_{k=1}^{\infty}\sum^{n+1}_{r=1}\sum^{m_k}_{m=1}a^r_{km}(f)u^r_{km}(P) \ \tag{1} f(P)=k=1r=1n+1m=1mkakmr(f)ukmr(P) (1)
这里系数 a k m r 不依赖于 P . 这里系数a^r_{km}不依赖于P. 这里系数akmr不依赖于P.
b ) 系数 a k m r ( f ) 可以选择为 f 的连续泛函形式,因此 b) 系数 a^r_{km}(f) 可以选择为 f 的连续泛函形式,因此 b)系数akmr(f)可以选择为f的连续泛函形式,因此
∣ a k m r ( f ) ∣ ≤ a ( F ) ,   ∑ k = 1 ∞ a k ( F ) < ∞ |a^r_{km}(f)|\leq a(\mathfrak{F}),\ \sum^{\infty}_{k=1}a_k(\mathfrak{F}) <\infty akmr(f)a(F), k=1ak(F)<
在每个簇 F 上 , 具有统一和等效的函数 f 在每个簇\mathfrak{F}上,具有统一和等效的函数f 在每个簇F,具有统一和等效的函数f
引理 1 的证明基于属性 1 ) 2 ) 和 4 ) u k m r 的属性 , 首先我们从评价 [ 估算 ] 以下陈述 [ 表达式 ] R 开始 引理1的证明基于属性1)2)和4)u^r_{km}的属性,首先我们从评价[估算]以下陈述[表达式]R开始 引理1的证明基于属性1)2)4)ukmr的属性,首先我们从评价[估算]以下陈述[表达式]R开始
f ( P ) = ∑ r = 1 n + 1 ∑ m = 1 m k b m r u k m r ( P ) + R , f(P)=\sum^{n+1}_{r=1}\sum^{m_k}_{m=1}b^r_mu^r_{km}(P)+R, f(P)=r=1n+1m=1mkbmrukmr(P)+R,
这里 这里 这里
b m r = 1 C f ( P k m r ) b^r_m={1\over C}f(P^r_{km}) bmr=C1f(Pkmr)
P k m r 是集合 G k m r 中的任意一点,我们可以很容易的选取系数 b m r 我们有 P^r_{km}是集合G^r_{km}中的任意一点,我们可以很容易的选取系数b^r_m我们有 Pkmr是集合Gkmr中的任意一点,我们可以很容易的选取系数bmr我们有
∣ R ∣ ≤ ( ∣ 1 − c / C ∣ + δ k ) M , |R|\leq(|1-c/C|+\delta_k)M, R(∣1c/C+δk)M,
其中
M = sup ⁡ P ∈ E n ∣ f ( P ) ∣   , δ k = sup ⁡ ρ ( P , P ′ ≤ d k ) ∣ f ( P ) − f ( P ′ ) ∣ . M=\sup_{P\in E^n}|f(P)| \ ,\delta_k=\sup_{\rho(P,P^{\prime}\leq d_k)}|f(P)-f(P^{\prime})|. M=PEnsupf(P) ,δk=ρ(P,Pdk)supf(P)f(P)∣.
引理 1 的完备证明不在本文的框架之内。现在我们将展开式 ( 1 ) 写成 引理1的完备证明不在本文的框架之内。现在我们将展开式(1)写成 引理1的完备证明不在本文的框架之内。现在我们将展开式(1)写成
f ( P ) = ∑ r = 1 n + 1 f r ( P ) , f r ( P ) = ∑ k = 1 ∞ ∑ m = 1 m k a k m r u k m r ( P )   (2) f(P)=\sum^{n+1}_{r=1}f^r(P),f^r(P)=\sum^{\infty}_{k=1}\sum^{m_k}_{m=1}a^r_{km}u^r_{km}(P)\ \tag{2} f(P)=r=1n+1fr(P),fr(P)=k=1m=1mkakmrukmr(P) (2)
u k m r 特性 2 ) , 3 ) 和 5 ) 暗示函数 f r 有以下性质 u^r_{km}特性2),3)和5)暗示函数f^r有以下性质 ukmr特性2),3)5)暗示函数fr有以下性质
引理2). 函数 f r ( P ) 在下面的函数中的每一个层级中的每一个部分都是 c o n s t a n t ( 常数 [ 译者 ] ) \textbf{引理2).}函数f^r(P)在下面的函数中的每一个层级中的每一个部分都是constant(常数[译者]) 引理2).函数fr(P)在下面的函数中的每一个层级中的每一个部分都是constant(常数[译者])
F r ( P ) = ∑ k = 1 ∞ 1 k 2 ∑ m = 1 m k u k m r ( P ) F^r(P)=\sum^{\infty}_{k=1}{1\over k^2}\sum^{m_k}_{m=1}u^r_{km}(P) Fr(P)=k=1k21m=1mkukmr(P)
现在我们意识到正如 A . S . K r o n r o d 所说的 , 在任意连续函数的层级成分组成的集合 ( 这里有问题 w h a t   m e a s   l e v e l   s e t  ? ) 形成了一个自认拓扑中的树 现在我们意识到正如A.S. Kronrod 所说的,在任意连续函数的层级成分组成的集合(这里有问题what \ meas \ level\ set \ ?)形成了一个自认拓扑中的树 现在我们意识到正如A.S.Kronrod所说的,在任意连续函数的层级成分组成的集合(这里有问题what meas level set )形成了一个自认拓扑中的树
我们使用 Ξ r 来表示 F r 中的 l e v e l   s e t 对应的树 , 然后通过同胚将树 Ξ 1 , . . . , Ξ n + 1 映射到 我们使用\Xi^r来表示F^r中的level\ set对应的树,然后通过同胚将树\Xi^1,...,\Xi^{n+1}映射到 我们使用Ξr来表示Fr中的level set对应的树,然后通过同胚将树Ξ1,...,Ξn+1映射到
ψ r ( Ξ r ) = Ξ 0 r ⊆ Ξ \psi_r(\Xi^r)=\Xi^r_0\subseteq \Xi ψr(Ξr)=Ξ0rΞ
在通用树的成对不相交的子集上。我们使 在通用树的成对不相交的子集上。我们使 在通用树的成对不相交的子集上。我们使
ϕ r ( P ) = ψ r ( ξ r ) \phi^r(P)=\psi_r(\xi^r) ϕr(P)=ψr(ξr)
如果 P ∈ ξ r ∈ Ξ r 且在 Ξ 上定义的连续函数 h r ( ξ ) , 则对 ξ ∈ Ξ r 如果P \in \xi^r\in\Xi^r且在\Xi上定义的连续函数h^r(\xi),则对\xi\in\Xi^r 如果PξrΞr且在Ξ上定义的连续函数hr(ξ),则对ξΞr
h r ( ξ ) = y ,   i f   f r ( P ) = y   f o r   P ∈ ψ r − 1 ( ξ ) h^r(\xi)=y, \ if \ f^r(P)=y \ for \ P \in \psi_r^{-1}(\xi) hr(ξ)=y, if fr(P)=y for Pψr1(ξ)
易得 易得 易得
f r ( P ) = h r [ ϕ r ( P ) ] . (3) f^r(P)=h^r[\phi^r(P)].\tag{3} fr(P)=hr[ϕr(P)].(3)
公式 ( 2 ) 和 ( 3 ) 导致定理 1 的断言 a ) , 定理 1 的断言 b ) 是根据引理 1 的主张 b ) 证明的。 公式(2)和(3)导致定理1的断言a),定理1的断言b)是根据引理1的主张b)证明的。 公式(2)(3)导致定理1的断言a),定理1的断言b)是根据引理1的主张b)证明的。
最后我们也陈述了没有证明以下命题 最后我们也陈述了没有证明以下命题 最后我们也陈述了没有证明以下命题

Theorem 4. Given any n > 2 and ( > 0, for each continuous function f on 
En there exist polynomials 
b( u 1 , . . . , Un -1 ) , a r ( X), C r ( X ) ; r = 1, . . . , n + 1, 
such that 
If(P) -1(p)1 < f 
at all the points PEEn, where 
l(x1'...' x n ) = L ar(xn)b[cr(xn) + Xl,..., cr(Xn) + X n -1]. (4) 
r= 1,2 
For n = 3, by setting 
d(u,v) = u + v, Or(x,y) = ar(x)y, hr(x,x') = cr(x) + x', 
we obtain from (4) 
j(X1' X2, X3) = d(Ol {X3, b[h1(X3, Xl), hI (X3, X2)]}, 
02{X3, b[h2(X3, Xl), h 2 (X3, X2)]}). (5) 
By virtue of Theorem 4, any continuous function of three variables can 
be approximated arbitrarily accurately by an expression of the form (5), where 
d, Or, band h r are polynomials in two variables. This remark also illuminates 
from a new viewpoint the group of problems related to Hilbert's 13th problem. 
5 May 1956 

定理4. 对于任意给定的 n ≥ 2 且 ϵ > 0 , 对于任意在 E n 上的连续函数 f 存在多项式 \textbf{定理4.}对于任意给定的n\geq2 且 \epsilon >0,对于任意在E^n上的连续函数f存在多项式 定理4.对于任意给定的n2ϵ>0,对于任意在En上的连续函数f存在多项式
b ( u 1 , . . . , x n − 1 ) ,   a r ( x ) , c r ( x ) ;   r = 1 , . . . , n + 1 , b(u_1,...,x_{n-1}),\ a_r(x),c_r(x); \ r=1,...,n+1, b(u1,...,xn1), ar(x),cr(x); r=1,...,n+1,
其中 其中 其中
∣ f ( P ) − f ˜ ( P ) ∣ < ϵ |f(P)-\~{f}(P)|<\epsilon f(P)f˜(P)<ϵ
当所有的点 P ∈ E n , 其中 当所有的点P\in E^n,其中 当所有的点PEn,其中
f ˜ ( x 1 , . . . , x n ) = ∑ r = 1 , 2 a r ( x n ) b [ c r ( x n ) + x 1 , . . . , c r ( x n ) + x n − 1 ]   (4) \~{f}(x1,...,x_n) =\sum_{r=1,2}a_r(x_n)b[c_r(x_n)+x_1,...,c_r(x_n)+x_{n-1}] \ \tag{4} f˜(x1,...,xn)=r=1,2ar(xn)b[cr(xn)+x1,...,cr(xn)+xn1] (4)
对于 n = 3 , 令 对于n=3,令 对于n=3,
d ( u , v ) = u + v , g r ( x , y ) = a r ( x ) y , h r ( x , x ′ ) = c r ( x ) + x ′ d(u,v)=u+v,g_r(x,y)=a_r(x)y,h_r(x,x')=c_r(x)+x' d(u,v)=u+v,gr(x,y)=ar(x)y,hr(x,x)=cr(x)+x
从 ( 4 ) 得到 从(4)得到 (4)得到
f ˜ ( x 1 , x 2 , x 3 ) = d ( g 1 { x 3 , b [ h 1 ( x 3 , x 1 ) , h 1 ( x 3 , x 2 ) ] } , g 2 { x 3 , b [ h 2 ( x 3 , x 1 ) , h 2 ( x 3 , x 2 ) ] }   ( 5 ) ) \~{f}(x_1,x_2,x_3)=d(g_1\{x_3,b[h_1(x_3,x_1),h_1(x_3,x_2)]\}, \\g_2\{x_3,b[h_2(x_3,x_1),h_2(x_3,x_2)]\} \ (5)) f˜(x1,x2,x3)=d(g1{x3,b[h1(x3,x1),h1(x3,x2)]},g2{x3,b[h2(x3,x1),h2(x3,x2)]} (5))
根据定理 4 ,可以通过表达式( 5 )的表达来准确地近似三个变量的任何连续函数, 其中 d , g r , b 和 h r 是两个变量中的多项式。 这句话也从新的角度阐明了与希尔伯特第 13 个问题有关的一组问题。 根据定理4,可以通过表达式(5)的表达来准确地近似三个变量的任何连续函数,\\其中d,g_r,b和h_r是两个变量中的多项式。\\这句话也从新的角度阐明了与希尔伯特第13个问题有关的一组问题。 根据定理4,可以通过表达式(5)的表达来准确地近似三个变量的任何连续函数,其中d,gr,bhr是两个变量中的多项式。这句话也从新的角度阐明了与希尔伯特第13个问题有关的一组问题。
1956.5.5 \begin{array}{r} 1956.5.5 \end{array} 1956.5.5

R e f e r e n c e s 1. D . H i l b e r t , G e s a m m e l t e A b h a n d l u n g e n V o l . 3 , N o . 17 , B e r l i n , 1935. 2. K . M e n g e r , K u r v e n t h e o r i e , C h a p t e r 10 , 6 , B e r l i n , 1932. 3. A . S . K r o n r o d , U s p e k h i M a t . N a u k 5 : 1 ( 1950 ) , 24 − 134 ( i n R u s s i a n ) . \begin{array}{c} References \\ 1.D. Hilbert, Gesammelte Abhandlungen Vol. 3, No. 17, Berlin, 1935. \\ 2. K. Menger, Kurventheorie, Chapter 10, 6, Berlin, 1932. \\ 3. A.S. Kronrod, Uspekhi Mat. Nauk 5:1 (1950),24-134 (in Russian). \\ \end{array} References1.D.Hilbert,GesammelteAbhandlungenVol.3,No.17,Berlin,1935.2.K.Menger,Kurventheorie,Chapter10,6,Berlin,1932.3.A.S.Kronrod,UspekhiMat.Nauk5:1(1950),24134(inRussian).

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值