特征工程

 特征工程是什么?

     数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动。我们知道,数据是信息的载体,但是原始的数据包含了大量的噪声,信息的表达也不够简练。因此,特征工程的目的,是通过一系列的工程活动,将这些信息使用更高效的编码方式(特征)表示。使用特征表示的信息,信息损失较少,原始数据中包含的规律依然保留。此外,新的编码方式还需要尽量减少原始数据中的不确定因素(白噪声、异常数据、数据缺失…等等)的影响。特征工程的目的是最大限度地从原始数据中提取特征以供算法和模型使用。特征工程包括以下方面:

 

     特征处理是特征工程的核心部分,sklearn提供了较为完整的特征处理方法,包括数据预处理,特征选择,降维等。首次接触到sklearn,通常会被其丰富且方便的算法模型库吸引,但是这里介绍的特征处理库也十分强大!

本文中使用sklearn中的IRIS(鸢尾花)数据集来对特征处理功能进行说明。IRIS数据集由Fisher在1936年整理,包含4个特征(Sepal.Length(花萼长度)、Sepal.Width(花萼宽度)、Petal.Length(花瓣长度)、Petal.Width(花瓣宽度)),特征值都为正浮点数,单位为厘米。目标值为鸢尾花的分类(Iris Setosa(山鸢尾)、Iris Versicolour(杂色鸢尾),Iris Virginica(维吉尼亚鸢尾))。导入IRIS数据集的代码如下:

from sklearn.datasets import load_iris#导入IRIS数据集
 iris = load_iris() 
 #特征矩阵
 iris.data
 iris.target

2 、数据预处理

  通过特征提取,我们能得到未经处理的特征,这时的特征可能有以下问题:

  • 不属于同一量纲:即特征的规格不一样,不能够放在一起比较。无量纲化可以解决这一问题。
  • 信息冗余:对于某些定量特征,其包含的有效信息为区间划分,例如学习成绩,假若只关心“及格”或不“及格”,那么需要将定量的考分,转换成“1”和“0”表示及格和未及格。二值化可以解决这一问题。
  • 定性特征不能直接使用:某些机器学习算法和模型只能接受定量特征的输入,那么需要将定性特征转换为定量特征。最简单的方式是为每一种定性值指定一个定量值,但是这种方式过于灵活,增加了调参的工作。独热编码:假设有N种定性值,则将这一个特征扩展为N种特征,当原始特征值为第i种定性值时,第i个扩展特征赋值为1,其他扩展特征赋值为0。哑编码的方式相比直接指定的方式,不用增加调参的工作,对于线性模型来说,使用哑编码后的特征可达到非线性的效果。
  • 存在缺失值:缺失值需要补充。
  • 信息利用率低:不同的机器学习算法和模型对数据中信息的利用是不同的,之前提到在线性模型中,使用对定性特征哑编码可以达到非线性的效果。类似地,对定量变量多项式化,或者进行其他的转换,都能达到非线性的效果。

sklearn中的preproccessing库来进行数据预处理,可以覆盖以上问题的解决方案。

2.1 无量纲化

  无量纲化使不同规格的数据转换到同一规格。常见的无量纲化方法有标准化和区间缩放法。标准化的前提是特征值服从正态分布,标准化后,其转换成标准正态分布。区间缩放法利用了边界值信息,将特征的取值区间缩放到某个特点的范围,例如[0, 1]等。

标准化

需要计算特征的均值和标准差(标准差的平方=方差),公式表达为:
                                                             
使用preproccessing库的StandardScaler类对数据进行标准化的代码如下:

 from sklearn.preprocessing import StandardScaler 
 #标准化,返回值为标准化后的数据
 StandardScaler().fit_transform(iris.data)

区间缩放法

常见的一种为利用两个最值进行缩放,公式表达为: 
                                                             
使用preproccessing库的MinMaxScaler类对数据进行区间缩放的代码如下:

 from sklearn.preprocessing import MinMaxScaler 
 #区间缩放,返回值为缩放到[0, 1]区间的数据
 MinMaxScaler().fit_transform(iris.data)

归一化

  简单来说,标准化是依照特征矩阵的列处理数据,其通过求z-score的方法,将样本的特征值转换到同一量纲下。归一化是依照特征矩阵的行处理数据,其目的在于样本向量在点乘运算或其他核函数计算相似性时,拥有统一的标准,也就是说都转化为“单位向量”。规则为l2的归一化公式如下:

                                                        
使用preproccessing库的Normalizer类对数据进行归一化的代码如下:

from sklearn.preprocessing import Normalizer
 #归一化,返回值为归一化后的数据
Normalizer().fit_transform(iris.data)

2.2 对定量特征二值化

定量特征二值化的核心在于设定一个阈值,大于阈值的赋值为1,小于等于阈值的赋值为0,公式表达如下:

                                                   
使用preproccessing库的Binarizer类对数据进行二值化的代码如下:

from sklearn.preprocessing import Binarizer
 #二值化,阈值设置为3,返回值为二值化后的数据
 Binarizer(threshold=3).fit_transform(iris.data)

2.3 对定性特征独热编码

       独热编码:使用一个二进制的位来表示某个定性特征的出现与否

      使用preproccessing库的OneHotEncoder类对数据进行哑编码的代码如下:

 from sklearn.preprocessing import OneHotEncoder
 #哑编码,对IRIS数据集的目标值,返回值为哑编码后的数据
OneHotEncoder().fit_transform(iris.target.reshape((-1,1)))

2.4 缺失值计算

删除

     最简单的方法是删除,删除属性或者删除样本。如果大部分样本该属性都缺失,这个属性能提供的信息有限,可以选择放弃使用该维属性;如果一个样本大部分属性缺失,可以选择放弃该样本。虽然这种方法简单,但只适用于数据集中缺失较少的情况。

统计填充

    对于缺失值的属性,尤其是数值类型的属性,根据所有样本关于这维属性的统计值对其进行填充,如使用平均数、中位数、众数、最大值、最小值等,具体选择哪种统计值需要具体问题具体分析。另外,如果有可用类别信息,还可以进行类内统计,比如身高,男性和女性的统计填充应该是不同的。

   由于IRIS数据集没有缺失值,故对数据集新增一个样本,4个特征均赋值为NaN,表示数据缺失。使用preproccessing库的Imputer类对数据进行缺失值计算,Imputer实例,指定用该属性的中位数替换它的每个缺失值。 代码如下:

1 from numpy import vstack, array, nan
2 from sklearn.preprocessing import Imputer
3 
4 #缺失值计算,返回值为计算缺失值后的数据
5 #参数missing_value为缺失值的表示形式,默认为NaN
6 #参数strategy为缺失值填充方式,默认为mean(均值)
7 Imputer().fit_transform(vstack((array([nan, nan, nan, nan]), iris.data)))

统一填充

   对于含缺失值的属性,把所有缺失值统一填充为自定义值,如何选择自定义值也需要具体问题具体分析。当然,如果有可用类别信息,也可以为不同类别分别进行统一填充。常用的统一填充值有:“空”、“0”、“正无穷”、“负无穷”等。

预测填充

   我们可以通过预测模型利用不存在缺失值的属性来预测缺失值,也就是先用预测模型把数据填充后再做进一步的工作,如统计、学习等。虽然这种方法比较复杂,但是最后得到的结果比较好。

具体分析

    上面两次提到具体问题具体分析,为什么要具体问题具体分析呢?因为属性缺失有时并不意味着数据缺失,缺失本身是包含信息的,所以需要根据不同应用场景下缺失值可能包含的信息进行合理填充。下面通过一些例子来说明如何具体问题具体分析,仁者见仁智者见智,仅供参考:

  1. “年收入”:商品推荐场景下填充平均值,借贷额度场景下填充最小值;
  2. “行为时间点”:填充众数;
  3. “价格”:商品推荐场景下填充最小值,商品匹配场景下填充平均值;
  4. “人体寿命”:保险费用估计场景下填充最大值,人口估计场景下填充平均值;
  5. “驾龄”:没有填写这一项的用户可能是没有车,为它填充为0较为合理;
  6. ”本科毕业时间”:没有填写这一项的用户可能是没有上大学,为它填充正无穷比较合理;
  7. “婚姻状态”:没有填写这一项的用户可能对自己的隐私比较敏感,应单独设为一个分类,如已婚1、未婚0、未填-1。  

2.5 数据变换

  常见的数据变换有基于多项式的、基于指数函数的、基于对数函数的。4个特征,度为2的多项式转换公式如下:

                  
 使用preproccessing库的PolynomialFeatures类对数据进行多项式转换的代码如下:

from sklearn.preprocessing import PolynomialFeatures
 #多项式转换,参数degree为度,默认值为2
 PolynomialFeatures().fit_transform(iris.data)

  基于函数的数据变换可以使用一个统一的方式完成,使用preproccessing库的FunctionTransformer对数据进行对数函数转换的代码如下:

1 from numpy import log1p
2 from sklearn.preprocessing import FunctionTransformer
#自定义转换函数为对数函数的数据变换,第一个参数是单变元函数
6 FunctionTransformer(log1p).fit_transform(iris.data)

总结:

功能说明
StandardScaler无量纲化标准化,基于特征矩阵的列,将特征值转换至服从标准正态分布
MinMaxScaler无量纲化区间缩放,基于最大最小值,将特征值转换到[0, 1]区间上
Normalizer归一化基于特征矩阵的行,将样本向量转换为“单位向量”
Binarizer二值化基于给定阈值,将定量特征按阈值划分
OneHotEncoder哑编码将定性数据编码为定量数据
Imputer缺失值计算计算缺失值,缺失值可填充为均值等
PolynomialFeatures多项式数据转换多项式数据转换
FunctionTransformer自定义单元数据转换使用单变元的函数来转换数据

3、特征选择

当数据预处理完成后,我们需要选择有意义的特征进行训练。通常来说,从两个方面考虑来选择特征:

  • 特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。
  • 特征与目标的相关性:与目标相关性高的特征,应当优选选择。除方差法外,本文介绍的其他方法均从相关性考虑。

根据特征选择的形式又可以将特征选择方法分为3种:

  • Filter:过滤法,按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,选择特征。
  • Wrapper:包装法,根据目标函数(通常是预测效果评分),每次选择若干特征,或者排除若干特征。
  • Embedded:嵌入法,先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣。

我们使用sklearn中的feature_selection库来进行特征选择。

1、Filter

方差选择法

  使用方差选择法,先要计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征。使用feature_selection库的VarianceThreshold类来选择特征的代码如下:

from sklearn.feature_selection import VarianceThreshold
 #方差选择法,返回值为特征选择后的数据
 #参数threshold为方差的阈值
VarianceThreshold(threshold=3).fit_transform(iris.data)

相关系数法

  使用相关系数法,先要计算各个特征对目标值的相关系数以及相关系数的P值。用feature_selection库的SelectKBest类结合相关系数来选择特征的代码如下:

from sklearn.feature_selection import SelectKBest
from scipy.stats import pearsonr
#选择K个最好的特征,返回选择特征后的数据
#第一个参数为计算评估特征是否好的函数,该函数输入特征矩阵和目标向量,输出二元组(评分,P值)的数组,数组第i项为第i个特征的评分和P值。在此定义为计算相关系数,参数k为选择的特征个数
SelectKBest(lambda X, Y: array(map(lambda x:pearsonr(x, Y), X.T)).T, k=2).fit_transform(iris.data, iris.target)

 X与Y之间的协方差定义为:  Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}

    协方差Cov(X,Y)是描述随机变量相互关联程度的一个特征数。从协方差的定义可以看出,它是X的偏差【X-E(X)】与Y的偏差【Y-E(Y)】的乘积的数学期望。由于偏差可正可负,因此协方差也可正可负。

l  当协方差Cov(X,Y)>0时,称X与Y正相关

l  当协方差Cov(X,Y)<0时,称X与Y负相关

l  当协方差Cov(X,Y)=0时,称X与Y不相关

卡方检验

  经典的卡方检验是检验定性自变量对定性因变量的相关性,通常用在某个变量(或特征)值是不是和应变量有显著关系。假设自变量有N种取值,因变量有M种取值,考虑自变量等于i且因变量等于j的样本频数的观察值与期望的差距,构建统计量:
                                                                 
其中:A是实际值,E为理论值。

                                                           

例如,两组大白鼠在不同致癌剂作用下的发癌率如下表,问两组发癌率有无差别?

处理

发癌数

未发癌数

合计

发癌率%

52

19

71

73.24

39

3

42

92.86

合计

91

22

113

80.53

     卡方检验的统计量是卡方值,它是每个格子实际频数A与理论频数T差值平方与理论频数之比的累计和。每个格子中的理论频数T是在假定两组的发癌率相等(=两组合计的发癌率)的情况下计算出来的,

      如第一行第一列的理论频数E为71*(91/113)=57.18,(52-57.18)^2/57.18=卡方值,故卡方值越大,说明实际频数与理论频数的差别越明显,两组发癌率不同的可能性越大。

参考:https://www.jianshu.com/p/807b2c2bfd9b

  这个统计量的含义简而言之就是自变量对因变量的相关性。从大到小排序,,选择卡方值排在前面的K个特征作为最终的特征选择。用feature_selection库的SelectKBest类结合卡方检验来选择特征的代码如下:

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
#选择K个最好的特征,返回选择特征后的数据
SelectKBest(chi2, k=2).fit_transform(iris.data, iris.target)

互信息法

  经典的互信息也是评价定性自变量对定性因变量的相关性的,互信息计算公式如下:

                                                     
  为了处理定量数据,最大信息系数法被提出,使用feature_selection库的SelectKBest类结合最大信息系数法来选择特征的代码如下:

 1 from sklearn.feature_selection import SelectKBest
 2 from minepy import MINE
#由于MINE的设计不是函数式的,定义mic方法将其为函数式的,返回一个二元组,二元组的第2项设置成固定的P值0.5
 5 def mic(x, y):
 6     m = MINE()
 7     m.compute_score(x, y)
 8     return (m.mic(), 0.5)
 9 
10 #选择K个最好的特征,返回特征选择后的数据
11 SelectKBest(lambda X, Y: array(map(lambda x:mic(x, Y), X.T)).T, k=2).fit_transform(iris.data, iris.target)

3.2、 Wrapper

递归特征消除法

  递归特征消除的主要思想是反复构建模型,然后选出最好的(或者最差的)特征(根据系数来选),把选出来的特征放到一边,然后在剩余的特征上重复这个过程,直到遍历了所有的特征。在这个过程中被消除的次序就是特征的排序。使用feature_selection库的RFE类来选择特征的代码如下:

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

#递归特征消除法,返回特征选择后的数据
#参数estimator为基模型
#参数n_features_to_select为选择的特征个数
RFE(estimator=LogisticRegression(), n_features_to_select=2).fit_transform(iris.data, iris.target)

      sklearn官方解释:对特征含有权重的预测模型(例如,线性模型对应参数coefficients),RFE通过递归减少考察的特征集规模来选择特征。首先,预测模型在原始特征上训练,每个特征指定一个权重。之后,那些拥有最小绝对值权重的特征被踢出特征集。如此往复递归,直至剩余的特征数量达到所需的特征数量 。

3.3、Embedded

基于惩罚项的特征选择法

  使用带惩罚项的基模型,除了筛选出特征外,同时也进行了降维。由于L1范数有筛选特征的作用,因此,训练的过程中,如果使用了L1范数作为惩罚项,可以起到特征筛选的效果。

from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import LogisticRegression
 #带L1惩罚项的逻辑回归作为基模型的特征选择
SelectFromModel(LogisticRegression(penalty="l1", C=0.1)).fit_transform(iris.data, iris.target)

       L1正则方法具有稀疏解的特性,因此天然具备特征选择的特性,但是要注意,L1没有选到的特征不代表不重要,L1惩罚项降维的原理在于保留多个对目标值具有同等相关性的特征中的一个两个具有高相关性的特征可能只保留了一个,如果要确定哪个特征重要应再通过L2正则方法交叉检验;故可结合L2惩罚项来优化。具体操作为:若一个特征在L1中的权值为1,选择在L2中权值差别不大且在L1中权值为0的特征构成同类集合,将这一集合中的特征平分L1中的权值 

       使用feature_selection库的SelectFromModel类结合带L1以及L2惩罚项的逻辑回归模型,来选择特征的代码如下:

from sklearn.feature_selection import SelectFromModel
 #带L1和L2惩罚项的逻辑回归作为基模型的特征选择
 #参数threshold为权值系数之差的阈值
SelectFromModel(LR(threshold=0.5, C=0.1)).fit_transform(iris.data, iris.target)

基于树模型的特征选择法

  训练能够对特征打分的预选模型:GBDT、RandomForest和随机Logistic Regression等都能对模型的特征打分,通过打分获得相关性后再训练最终模型;

 from sklearn.feature_selection import SelectFromModel
 from sklearn.ensemble import GradientBoostingClassifier
 #GBDT作为基模型的特征选择
 SelectFromModel(GradientBoostingClassifier()).fit_transform(iris.data, iris.target)

使用随机逻辑回归进行特征筛选,并利用筛选后的特征建立逻辑回归模型

 RandomizedLogisticRegression 随机逻辑回归

     官网对于随机逻辑回归的解释:对训练数据进行多次采样,拟合L1惩罚的逻辑回归模型,即在不同的数据子集和特征子集上运行特征算法,不断重复,最终选择得分高的重要特征。这是稳定性选择方法。得分高的重要特征可能是由于被认为是重要特征的频率高(被选为重要特征的次数除以它所在的子集被测试的次数)

from sklearn.linear_model import LogisticRegression as LR
from sklearn.linear_model import RandomizedLogisticRegression as RLR
 
rlr=RLR()  #建立随机逻辑回归模型,筛选变量
rlr.fit(x,y)  #训练模型
rlr.get_support()  #获取特征筛选结果,也可以通过.scores_方法获取各个特征的分数
 
print(u'有效特征为:%s'%','.join(np.array(data.iloc[:,:8].columns)[rlr.get_support()]))
x=data[np.array(data.iloc[:,:8].columns)[rlr.get_support()]].as_matrix()  #筛选好特征
 
lr=LR()  #建立逻辑回归模型
lr.fit(x,y)  #用筛选后的特征数据来训练模型
print(u'逻辑回归模型训练结束')
print(u'模型的平均正确率为:%s'%lr.score(x,y))  #给出模型的平均正确率

Methods:score(X, y[, sample_weight])    
Parameters:

:x:array-like, Test samples;        y: array-like, True labels for X.

sample_weight:可选项,样本权重

返回值score: float, Mean accuracy of self.predict(X) wrt. y 获取各个特征的分数 

3.4、特征组合

      通过特征组合后再来选择特征:如对用户id和用户特征最组合来获得较大的特征集再来选择特征,这种做法在推荐系统和广告系统中比较常见.

总结:

所属方式说明
VarianceThresholdFilter方差选择法
SelectKBestFilter可选关联系数、卡方校验、最大信息系数作为得分计算的方法
RFEWrapper递归地训练基模型,将权值系数较小的特征从特征集合中消除
SelectFromModelEmbedded训练基模型,选择权值系数较高的特征

4、降维

  当特征选择完成后,可以直接训练模型了,但是可能由于特征矩阵过大,导致计算量大,训练时间长的问题,因此降低特征矩阵维度也是必不可少的。常见的降维方法除了以上提到的基于L1惩罚项的模型以外,另外还有主成分分析法(PCA)和线性判别分析(LDA),线性判别分析本身也是一个分类模型。PCA和LDA有很多的相似点,其本质是要将原始的样本映射到维度更低的样本空间中,但是PCA和LDA的映射目标不一样:PCA是为了让映射后的样本具有最大的发散性;而LDA是为了让映射后的样本有最好的分类性能。所以说PCA是一种无监督的降维方法,而LDA是一种有监督的降维方法

说明
decompositionPCA主成分分析法
ldaLDA线性判别分析法

主成分分析法(PCA)

  使用decomposition库的PCA类选择特征的代码如下:

from sklearn.decomposition import PCA
 #主成分分析法,返回降维后的数据
#参数n_components为主成分数目
PCA(n_components=2).fit_transform(iris.data)

线性判别分析法(LDA)

  使用lda库的LDA类选择特征的代码如下:

 from sklearn.lda import LDA
 #线性判别分析法,返回降维后的数据
 #参数n_components为降维后的维数
 LDA(n_components=2).fit_transform(iris.data, iris.target)

from:https://www.cnblogs.com/jasonfreak/p/5448385.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值