AcWing 787 && AcWing 788

1.2 归并排序

AcWing 787. 归并排序

题目

给定你一个长度为n的整数数列。

请你使用归并排序对这个数列按照从小到大进行排序。

并将排好序的数列按顺序输出。

输入格式

输入共两行,第一行包含整数 n。

第二行包含 n 个整数(所有整数均在1~109109范围内),表示整个数列。

输出格式

输出共一行,包含 n 个整数,表示排好序的数列。

数据范围

1 ≤ n ≤ 100000

输入样式:
5
3 1 2 4 5
输出样例:
1 2 3 4 5
解题思路

归并排序(merge sort)采用的是”分治"的思想,主要步骤为以下三步:

  1. 选取合适的基准点(pivot)

  2. 对基准点左右两边分别进行递归排序

  3. 将两个有序数组合并为一个数组

程序代码
#include <stdio.h>

void merge_sort(int arr[], int l, int r);

int n;

int main() {
    scanf("%d", &n);
    int arr[n];
    for (int i = 0; i < n; i++) scanf("%d", &arr[i]);
    merge_sort(arr, 0, n-1);
    for (int i = 0; i < n; i++) printf("%d ", arr[i]);
    return 0;
}

void merge_sort(int arr[], int l, int r) {
    if (l >= r) return;
    int mid = (l+r)/2;
    int i = l, j = mid+1, k = 0;
    int tmp[n];
    merge_sort(arr, l, mid);
    merge_sort(arr, mid+1, r);
    while (i <= mid && j <= r) {
        if (arr[i] <= arr[j]) tmp[k++] = arr[i++];
        else tmp[k++] = arr[j++];
    }
    while (i <= mid) tmp[k++] = arr[i++];
    while (j <= r) tmp[k++] = arr[j++];
    for (int i = l, j = 0; i <= r; i++, j++) arr[i] = tmp[j];
}

AcWing 788. 逆序对的数量

题目

给定一个长度为n的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第i个和第j个元素,如果满足i<j且a[i]>a[j],则其为一个逆序对;否则不是。

输入格式

第一行包含整数n,表示数列的长度。

第二行包含 n 个整数,表示整个数列。

输出格式

输出一个整数,表示逆序对的个数。

数据范围

1 ≤ n ≤ 100000

输入样式:
6
2 3 4 5 6 1
输出样例:
5
解题思路

此题采用归并排序的思想,由于归并排序的时候数组为有序数组,因此很容易能够判断是否为逆序对。

程序代码
#include <stdio.h>

int merge_sort(int arr[], int l, int r);

int n;

int main() {
    scanf("%d", &n);
    int arr[n];
    for (int i = 0; i < n; i++) scanf("%d", &arr[i]);
    printf("%d", merge_sort(arr, 0, n-1));
    return 0;
}

int merge_sort(int arr[], int l, int r) {
    if (l >= r) return 0;
    int mid = (l+r)/2;
    int tmp[n];
	int count = 0;
    int i = l, j = mid+1, k = 0;
    count = merge_sort(arr, l, mid) + merge_sort(arr, mid+1, r);
    while (i <= mid && j <= r) {
        if (arr[i] <= arr[j]) tmp[k++] = arr[i++];
        else {
            count += mid-i+1;
            tmp[k++] = arr[j++];
        }
    }
    while (i <= mid) tmp[k++] = arr[i++];
    while (j <= r) tmp[k++] = arr[j++];
    for (int i = l, j = 0; i <= r; i++, j++) arr[i] = tmp[j];
    return count;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值