1.2 归并排序
AcWing 787. 归并排序
题目
给定你一个长度为n的整数数列。
请你使用归并排序对这个数列按照从小到大进行排序。
并将排好序的数列按顺序输出。
输入格式
输入共两行,第一行包含整数 n。
第二行包含 n 个整数(所有整数均在1~109109范围内),表示整个数列。
输出格式
输出共一行,包含 n 个整数,表示排好序的数列。
数据范围
1 ≤ n ≤ 100000
输入样式:
5
3 1 2 4 5
输出样例:
1 2 3 4 5
解题思路
归并排序(merge sort)采用的是”分治"的思想,主要步骤为以下三步:
-
选取合适的基准点(pivot)
-
对基准点左右两边分别进行递归排序
-
将两个有序数组合并为一个数组
程序代码
#include <stdio.h>
void merge_sort(int arr[], int l, int r);
int n;
int main() {
scanf("%d", &n);
int arr[n];
for (int i = 0; i < n; i++) scanf("%d", &arr[i]);
merge_sort(arr, 0, n-1);
for (int i = 0; i < n; i++) printf("%d ", arr[i]);
return 0;
}
void merge_sort(int arr[], int l, int r) {
if (l >= r) return;
int mid = (l+r)/2;
int i = l, j = mid+1, k = 0;
int tmp[n];
merge_sort(arr, l, mid);
merge_sort(arr, mid+1, r);
while (i <= mid && j <= r) {
if (arr[i] <= arr[j]) tmp[k++] = arr[i++];
else tmp[k++] = arr[j++];
}
while (i <= mid) tmp[k++] = arr[i++];
while (j <= r) tmp[k++] = arr[j++];
for (int i = l, j = 0; i <= r; i++, j++) arr[i] = tmp[j];
}
AcWing 788. 逆序对的数量
题目
给定一个长度为n的整数数列,请你计算数列中的逆序对的数量。
逆序对的定义如下:对于数列的第i个和第j个元素,如果满足i<j且a[i]>a[j],则其为一个逆序对;否则不是。
输入格式
第一行包含整数n,表示数列的长度。
第二行包含 n 个整数,表示整个数列。
输出格式
输出一个整数,表示逆序对的个数。
数据范围
1 ≤ n ≤ 100000
输入样式:
6
2 3 4 5 6 1
输出样例:
5
解题思路
此题采用归并排序的思想,由于归并排序的时候数组为有序数组,因此很容易能够判断是否为逆序对。
程序代码
#include <stdio.h>
int merge_sort(int arr[], int l, int r);
int n;
int main() {
scanf("%d", &n);
int arr[n];
for (int i = 0; i < n; i++) scanf("%d", &arr[i]);
printf("%d", merge_sort(arr, 0, n-1));
return 0;
}
int merge_sort(int arr[], int l, int r) {
if (l >= r) return 0;
int mid = (l+r)/2;
int tmp[n];
int count = 0;
int i = l, j = mid+1, k = 0;
count = merge_sort(arr, l, mid) + merge_sort(arr, mid+1, r);
while (i <= mid && j <= r) {
if (arr[i] <= arr[j]) tmp[k++] = arr[i++];
else {
count += mid-i+1;
tmp[k++] = arr[j++];
}
}
while (i <= mid) tmp[k++] = arr[i++];
while (j <= r) tmp[k++] = arr[j++];
for (int i = l, j = 0; i <= r; i++, j++) arr[i] = tmp[j];
return count;
}