深度学习
硪行硪是
庭哥要变强!
展开
-
论文精读之PDE-Net: Learning PDEs from Data
论文精读之PDE-Net: Learning PDEs from Data摘要Partial differential equations (PDEs) play a prominent role in many disciplines of science and engineering. PDEs are commonly derived based on empirical observ...原创 2019-01-15 17:09:30 · 8912 阅读 · 8 评论 -
Pytorch入门之基本操作
Pytorch入门之基本操作继TensorFlow、keras之后,开始学习新的深度学习框架——Pytorch。整理只是为了方便以后查找。学习内容来自一个印度小哥哥写的一个在GitHub上的深度学习教程,附上学习链接。整理人:陈振庭qq:956598250Tensor basicsimport numpy as npimport torch产生一个0张量:x = torch.T...原创 2019-01-15 20:10:38 · 1629 阅读 · 0 评论 -
Pytorch入门之基本操作2
上次写了关于Pytorch入门基本操作,主要是对数据的操作,这次主要写关于Pytorch在使用时涉及到几个部分的一些入门知识。写博客的目的是方便自己以后复习查找。学习内容来自于<<深度学习之Pytorch>>这本书,顺便附上上一篇博客链接和书籍链接:Pytorch入门之基本操作书籍链接:https://pan.baidu.com/s/150jEc原创 2019-02-25 21:02:06 · 177 阅读 · 0 评论 -
卷积神经网络反向传播推导
由于导师要求自己从头到尾自己实现卷积神经网络,所以最近看了关于神经网络的反向传播内容。内容大部分都是从博客和书上摘录下来。整理完后方便自己以后复习!不喜勿喷。看完真的是清爽明朗!!!知道算法后写程序就简单多啦哈哈。梯度下降法我们训练神经网络的目的是找到能最小化代价函数C(w,b)C(w, b)C(w,b)的权重和偏置。假设我们要最小化某些函数,C(v)C(v)C(v)。它可以是任意的多元实值...原创 2019-03-30 19:03:52 · 1970 阅读 · 2 评论 -
手写一个神经网络
写篇水文来记录一下随手写的神经网络。承接上篇的卷积神经网络反向传播推导。不过这个是三层的神经网络,数据是手写数字的识别。代码写的乱七八糟,没有整理。不过可以直接运行。。。测试阶段懒得整理啊。。。代码很冗余的。后期优化一下吧。以此纪念我一个简单的bug找了三天。粗心害死人!import numpy as npimport matplotlib.pyplot as pltfrom tensorf...原创 2019-04-02 20:51:15 · 491 阅读 · 0 评论 -
使用C++编写卷积神经网络(一)
鉴于用python写神经网络、卷积神经网络的话,不利于框架直接用numpy等来完成,速度实在是慢的吓人,所以改用c++来写。c++的话什么操作基本都要自己定义。由于卷积神经网络主要针对图像类,故最好定义一个适用于图像类的矩阵类,我这边使用了网上一个开源的用c++写好的卷积神经网络,使用了里面定义好的矩阵类,如下。这个类个人觉得非常好用,故写成博客,收藏一波,方便以后使用时候查找。首先导入需要的模...原创 2019-05-23 20:08:36 · 7588 阅读 · 4 评论 -
使用C++编写卷积神经网络(二)
上一期介绍了用于储存图像的矩阵类,在写卷积神经网络前,先用C++实现一个三层的神经网络。以手写数字识别为例。嗯,非常经典到老掉牙的例子。首先先定义一些基本的操作的函数:查看矩阵信息的函数: show(matrix &m) { for (int i = 0; i < m.size(); i++) cout << m.x[i] << endl; cout ...原创 2019-07-02 17:52:44 · 3358 阅读 · 2 评论