单边切比雪夫不等式在离散型概率分布当中的应用与代码实现

单边切比雪夫不等式在离散型概率分布当中的应用与代码实现

一、单边切比雪夫不等式

1.1 基本概念

在这里插入图片描述

1.2 应用过程分析

常规来说,我们利用切比雪夫不等式是来估算随机变量在某个区间的概率。但是当我们来生成相关分布的随机数时,应该是一个逆过程

即,我们知道P{X<=x},逆应用切比雪夫不等式来得到对应的变量取值。

1.3 逆公式的推导

在这里插入图片描述
在这里插入图片描述
我们只需要得到λ,然后X就落在(Ex + λ,Ex + λ)之间(其中前者的λ<0,后者λ<0)。然后再在这个区间内利用二分查找找到最接近满足P{X<=x}的x值。

二、代码实现

在这里插入图片描述
在这里插入图片描述
在进行判断pm落在哪个区间时,用到了计算累计分布的函数,下文第三部分我们将其展开讨论。

三、正则beta函数积分计算

3.1 基本函数

在这里插入图片描述

3.2代码实现

在这里插入图片描述

四、生成样本点画图

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值