Sort it
题意:通过交换相邻两个数让元素各不相同的数列变成递增数列,问你最少次数是多少?
TP:
问你的是一个交换次数
我觉得有两种想法
要么就模拟交换的过程
做个排序
然后每交换一次就计一次数
另外一种思路是
通过某种高级算法O(n)扫一遍就能得出结果
不需要真正把数列排出来
我并想不出第二种方法
所以从第一种思路下手
为了使要两两交换次数最小
猜想莫非最小的次数就是当前数列的逆序数之和
因为存在逆序就必然要交换一次
比如3 2 1
对于1来说,逆序数是2
所以要把1排到最前面
那最少就要交换2次
如果能找到逆序数之和便是答案了
问题转化成了求整个数列的逆序数
求逆序数的方法
我只知道暴力O(n^2)和归并O(nlogn)
(知乎上没查到别的方法,等下再去stackoverflow上查一下)
那就用归并了
在归并排序的过程中
当排好了左区间和右区间
再进行归并的过程中
假设遇到这种情况:
想把7 8 9 ,3 4 5(此时a[mid] = 51
归为 3 4 5 7 8 9
当7和3比较时
你会发现右边的3比7小
一旦出现这种情况
那右边的3就不仅比7小了
还比8小
比9小
所以这里直接会出现3对逆序
因为左边和右边的区间是上次归并排好序的
所以很容易出现这种情况
换句话说
当a[j]<a[i]时
应该会出现mid - i + 1个逆序数
在每次归并时ans+=这个逆序数就行啦
#include <bits/stdc++.h>
using namespace std;
int a[1005];
int temp[1005];
int cnt;
void merge_sort(int arr[], int l, int r){
if(l==r)return;
int mid = (l+r)/2;
merge_sort(arr,l,mid);
merge_sort(arr,mid+1,r);
int k=0,i = l,j = mid+1;
while(i <= mid && j <= r){
if(arr[i] <= arr[j])temp[k++] = arr[i++];
else {
temp[k++] = arr[j++];
cnt += (mid - i + 1);
}
}
while(i<=mid)temp[k++] = arr[i++];
while(j<=r)temp[k++] = arr[j++];
for(k=0;k<r-l+1;k++){
arr[l+k] = temp[k];
}
}
int main()
{
int n;
while(cin>>n){
for(int i=1;i<=n;i++)cin>>a[i];
cnt = 0;
merge_sort(a,1,n);
cout<<cnt<<endl;
}
return 0;
}
Pyyy:All rights reserved;
根据二分mid = (l+r)>>1
还有另一种整数二分的形式:mid = (l+r+1)>>1
这两种二分还是有区别的
根据《算法竞赛 进阶指南》第0x04节的解释:
如果我们默认归并左和右是[l,mid]和[mid+1,r]
mid = (l+r)>>1时应该对应 l = mid + 1或 r = mid
mid = (l+r+1)>>1时应该对应 l = mid 或 r = mid - 1
读者可以举个例子并且指定mid的位置
然后观察下一次分区间应该怎么分 ↩︎