hdu 5889 Barricade

本文探讨了如何在网络流算法中仅沿着最短路径进行流量分配的问题,并提供了两种实现方式:一种使用Edmonds-Karp算法,另一种使用Dinic算法。通过预处理最短路径并限制搜索范围,确保了流量仅在这些关键路径上传输。
摘要由CSDN通过智能技术生成

大意:1为源点,n为汇点,在图的最短路上,跑网络流

题是很水,可是在跑完最短路上,怎么处理最短路的边使得等会跑网络流的时候只在最短路的边上跑,我试了好几种方法都感觉不太好处理

最后突然恍然大悟,跑完最短路后,,直接从汇点往源点跑网络流也是一样的效果啊

最近才刚学网络流,都敲了一遍

第一种是用EK做的,,,

第二种是用Dinic做的

听说此题会卡isap,,以后试试。。

#include<iostream>//EK得做法
#include<cstdio>
#include<math.h>
#include<algorithm>
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<string.h>
#include<cstring>
#include<vector>
using namespace std;
#define INF 0x3f3f3f3f
#define INFLL 0x3f3f3f3f3f3f3f3f
#define FIN freopen("input.txt","r",stdin)
#define mem(x,y) memset(x,y,sizeof(x))
typedef unsigned long long ULL;
typedef long long LL;
#define MX 1111
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
typedef pair<pair<int,int>,int> PIII;
typedef pair<int,int> PII;
int n,m,head[MX],rear;
int vis[MX],path[MX],d[MX];
int arr[MX];
struct Edge {
    int from,to,flow,nxt;
} edge[22222];
void edge_init() {
    rear=0;
    mem(head,-1);
}
void edge_add(int a,int b,int c) {
    edge[rear].from=a;
    edge[rear].to=b;
    edge[rear].flow=c;
    edge[rear].nxt=head[a];
    head[a]=rear++;
}
void bfs(int s) {
    mem(vis,0);
    queue<int> my;
    arr[s] = 0;
    my.push(s);
    vis[s]=1;
    while(!my.empty()) {
        int u = my.front();
        my.pop();
        for(int i = head[u]; ~i; i = edge[i].nxt) {
            int v = edge[i].to;
            if(vis[v]) continue;
            vis[v]=1;
            arr[v] = arr[u] + 1;
            my.push(v);
        }
    }
}
int EK(int s,int t) {
    int ans=0;
    while(1) {
        mem(vis,0);
        d[s]=INF;
        queue<int> my;
        my.push(s);
        vis[s]=1;
        int flag=0;
        while(!my.empty()) {
            int u=my.front();
            my.pop();
            if(u==t) {
                flag=1;
                break;
            }
            for(int i=head[u]; ~i; i=edge[i].nxt) {
                int v=edge[i].to;
                if(!edge[i].flow||vis[v]||arr[u]!=arr[v]+1) continue;
                path[v]=i;
                d[v]=min(edge[i].flow,d[u]);
                my.push(v);
                vis[v]=1;
            }
        }
        if(flag) {
            ans+=d[t];
            for(int i=t; i!=s; i=edge[path[i]].from) {
                edge[path[i]].flow-=d[t];
                edge[path[i]^1].flow+=d[t];
            }
        } else break;
    }
    return ans;
}
int main() {
    int _;
    scanf("%d",&_);
    while(_--) {
        scanf("%d%d",&n,&m);
        edge_init();
        for(int i=1; i<=m; i++) {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            edge_add(a,b,c);
            edge_add(b,a,c);
        }
        bfs(1);
        printf("%d\n",EK(n,1));
    }
    return 0;
}


</pre><pre>
#include<cstdio>//Dinic得做法
#include<math.h>
#include<algorithm>
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<string.h>
#include<cstring>
#include<vector>
using namespace std;
#define INF 0x3f3f3f3f
#define INFLL 0x3f3f3f3f3f3f3f3f
#define FIN freopen("input.txt","r",stdin)
#define mem(x,y) memset(x,y,sizeof(x))
typedef unsigned long long ULL;
typedef long long LL;
#define MX 1111
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
typedef pair<pair<int,int>,int> PIII;
typedef pair<int,int> PII;
int n,m,head[MX],rear;
int vis[MX],cur[MX],d[MX];
int arr[MX];
struct Edge
{
    int to,flow,nxt;
} edge[22222];
void edge_init()
{
    rear=0;
    mem(head,-1);
}
void edge_add(int a,int b,int c)
{
    edge[rear].to=b;
    edge[rear].flow=c;
    edge[rear].nxt=head[a];
    head[a]=rear++;
}
void bfs(int s)
{
    mem(vis,0);
    queue<int> my;
    arr[s] = 0;
    my.push(s);
    vis[s]=1;
    while(!my.empty())
    {
        int u = my.front();
        my.pop();
        for(int i = head[u]; ~i; i = edge[i].nxt)
        {
            int v = edge[i].to;
            if(vis[v]) continue;
            vis[v]=1;
            arr[v] = arr[u] + 1;
            my.push(v);
        }
    }
}
bool BFS(int s,int t)
{
    mem(vis,0);
    queue<int> my;
    my.push(s);
    vis[s]=1;
    d[s]=0;
    d[t]=-1;
    while(!my.empty())
    {
        int u=my.front();
        my.pop();
        for(int i=head[u]; ~i; i=edge[i].nxt)
        {
            int v=edge[i].to;
            if(arr[u]!=arr[v]+1||vis[v]||!edge[i].flow) continue;
            d[v]=d[u]+1;
            vis[v]=1;
            my.push(v);
        }
    }
    return d[t]!=-1;
}
int DFS(int x,int t,int a)
{
    if(x==t||a==0) return a;
    int flow=0,f;
    for(int &i=cur[x]; ~i; i=edge[i].nxt)
    {
        int v=edge[i].to;
        if(d[v]==d[x]+1&&arr[x]==arr[v]+1&&(f=DFS(v,t,min(a,edge[i].flow)))>0)
        {
            edge[i].flow-=f;
            edge[i^1].flow+=f;
            flow+=f;
            a-=f;
            if(a==0) break;
        }
    }
    return flow;
}
int Dinic(int s,int t)
{
    int flow=0;
    while(BFS(s,t))
    {
        memcpy(cur,head,sizeof(head));
        flow+=DFS(s,t,INF);
    }
    return flow;
}
int main()
{
    FIN;
    int _;
    scanf("%d",&_);
    while(_--)
    {
        scanf("%d%d",&n,&m);
        edge_init();
        for(int i=1; i<=m; i++)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            edge_add(a,b,c);
            edge_add(b,a,c);
        }
        bfs(1);
        printf("%d\n",Dinic(n,1));
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值