如何打印一个张量
`代码如下:
import tensorflow as tf
x = tf.Variable(tf.constant(0.1, shape=[10]))
y = tf.Variable(tf.random_normal([1, 3, 3, 2]))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# print(x.eval())
print(y) # 不能打印出数据,只能打印shape等信息
print(sess.run(y))
# print(y.eval()) 这也可以打印出来
结果:
<tf.Variable 'Variable_1:0' shape=(1, 3, 3, 2) dtype=float32_ref>
[[[[-0.20484701 0.14288321]
[ 0.30262762 2.06427193]
[ 0.96294218 -0.14774896]]
[[ 2.04327416 1.08319438]
[ 1.24813986 1.70884776]
[ 0.18231353 -0.5299539 ]]
[[-0.09187037 0.55746293]
[-0.7254616 1.01807666]
[ 0.69402778 -0.46212634]]]]
其中张量[1, 3, 3, 2]的理解。他是一个由1个3 个二维矩阵[3,2] 组成的四维数组。这有点绕, 可以想象理解一下。